火星探测热防护系统传感测量技术进展与启示OA北大核心CSTPCD
Progress and inspiration of sensing measurement technology for Mars exploration thermal protection system
当前对于火星进入、下降与着陆过程(entry,descent and landing,EDL)气动环境认知不足,任务风险高.在EDL系统上搭载传感仪器进行飞行数据测量,重建火星大气和气动热环境,并开展充分全面的地面验证是验证科学设计工具和降低未来火星EDL任务风险的有效途径,对任务成功与否至关重要.本文首先回顾了人类火星探测任务的发展历程,明确设置热防护传感系统的必要性;然后系统总结了美国两次火星着陆任务MSL、Mars 2020,欧洲ExoMars 2016 任务和中国天问一号任务所搭载的EDL热防护传感系统的体系构成,以及为满足任务要求,如何进行仪器选择与布局;归纳了 4 次任务飞行数据的重建方法、关键技术和结果结论;最后给出了EDL热防护传感系统总结的经验、面临的技术难题和未来发展建议.
Presently,there is an inadequate understanding of the aerodynamic conditions encountered during the entry,descent,and landing(EDL)phase on Mars,leading to significantly elevated mission risks.Implementing sensing instruments on the EDL system to measure flight data,reconstruct the Martian atmospheric environment,analyze entry aerodynamic thermal conditions,and conducting comprehensive ground validation are indispensable approaches for validating scientific design tools and mitigating the risks associated with future Mars EDL missions.These efforts play a key role in ensuring the success of such missions.Firstly,this study provides a comprehensive review of the development process of Mars exploration missions,emphasizing the crucial need for establishing thermal protection sensing systems.Subsequently,a systematic summary is presented regarding the composition of the EDL thermal protection sensing systems and the selection and layout of instruments that meet the mission requirements.Specifically,the thermal protection sensing systems employed in two US Mars landing missions,namely MSL(MEDLI)and Mars 2020(MEADSⅡ),as well as the European ExoMars 2016 mission(AMELIA and COMARS+subsystems)and the China Tianwen-1 mission(flush air data system and in-layer temperature-sensing system),are discussed.Afterwards,the study summarizes the reconstruction methods utilized,including the Kalman filter method,the least squares method and the Monte Carlo method,along with key technologies and findings derived from the flight data of the four aforementioned missions.Finally,the study presents a comprehensive analysis of the lessons learned,technical challenges encountered,and provides recommendations for the future development of EDL thermal protection sensing system.
宋思琪;张金刚;杨强;易法军;孟松鹤
哈尔滨工业大学特种环境复合材料技术国家级重点实验室,哈尔滨 150001哈尔滨工业大学特种环境复合材料技术国家级重点实验室,哈尔滨 150001||北京宇航系统工程研究所,北京 100076
火星探测进入、下降与着陆(EDL)传感系统数据重建热防护系统
Mars explorationentry,descent and landing(EDL)sensor systemdata reconstructionthermal protection system
《空气动力学学报》 2024 (005)
1-37 / 37
国家自然科学基金面上项目(12372207);国家自然科学基金重点项目(12090034)
评论