|国家科技期刊平台
首页|期刊导航|林业科学|聚集指数和最大羧化速率对基于遥感产品的植被生产力估算的影响

聚集指数和最大羧化速率对基于遥感产品的植被生产力估算的影响OA北大核心CSTPCD

Effects of Clumping Index and Maximum Carboxylation Rate on Vegetation Productivity Estimation Based on Remote Sensing Data

中文摘要英文摘要

[目的]明确聚集指数和最大羧化速率遥感产品对BEPS模型估算植被生产力的影响.[方法]利用中国陆地通量站点观测数据,分析BEPS模型中聚集指数(CI)和最大羧化速率(Vcmax)的敏感性程度,并比较聚集指数和最大羧化速率遥感产品对植被生产力估算的精度提升作用.在此基础上估算2012年中国陆地生态系统植被生产力,通过与参数缺省值估算结果对比,研究CI和Vcmax的时空变化对模型估算结果的影响.[结果]1)CI和Vcmax均为BEPS模型中较为敏感的参数,两者均与植被生产力呈正相关关系,且不同植被类型下Vcmax敏感性均高于CI.2)聚集指数和最大羧化速率遥感产品同时使用情况下,模拟结果的误差最小,精度最高,总初级生产力(GPP)均方根误差从665.60 g·m-2a-降至584.71 g·m-2a-1,平均误差和相对平均误差均为4种模拟情况最低值.3)2012年中国陆地生态系统GPP和净初级生产力(NPP)总量分别为5.21和2.49 Pg·a-1,受CI遥感产品(NDHD-CI)和Vcmax遥感产品(SIF-Vcmax)的时空变化影响,GPP和NPP估算分别较模型缺省值偏低3.06%和4.72%.[结论]NDHD-CI和SIF-Vcmax能够提升BEPS模型估算植被生产力的精度,未来可对其他高敏感度参数和模型机理进行优化改进.受CI和Vcmax时空变化影响,植被生产力估算结果略低于缺省情况.Vcmax对植被生产力估算影响高于CI.

[Objective]This study aims to investigate the effect of clumping index(CI)and maximum carboxylation rate(Vcmax)from remote sensing products on estimation of vegetation productivity with the boreal ecosystem productivity simulator(BEPS)model.[Method]The FLUXNET and ChinaFLUX data were used to analyze the sensitivities of CI and Vcmax in BEPS model,and compare the effects of CI and Vcmax on Gross Primary Productivity(GPP)estimation.On this basis,the vegetation productivity of terrestrial ecosystems in China in 2012 was estimated.By comparing with the estimated results of the default value,we determined the impact of the spatio-temporal changes of CI and Vcmax on the model performance.[Result]1)The results showed that CI and Vcmax had high sensitivities in the BEPS model.They were positively correlated with vegetation productivity,and the sensitivity of Vcmax was higher than that of CI in different vegetation types.2)When CI and Vcmax remote sensing products(NDHD-CI and SIF-Vcmax)were used simultaneously,the simulation results had the smallest error and the highest accuracy.The root mean square error(RMSE)of GPP decreased from 665.60 g·m-2a-1 to 584.71 g·m-2a-1,and the mean absolute error(MAE)and mean relative error(MRE)were the lowest in the four simulation cases.3)In 2012,the total GPP and Net Primary Productivity(NPP)of terrestrial ecosystems in China were 5.21 Pg·a-1 and 2.49 Pg·a-1.respectively.Affected by the spatio-temporal dynamics in the CI and Vcmax,the GPP and NPP estimates were 3.06%and 4.72%lower than the default results of the model,respectively.[Conclusion]Our results have demonstrated that NDHD-CI and SIF-Vcmax can improve the accuracy of BEPS models in estimating vegetation productivity,and other high-sensitivity parameters and model mechanisms can be optimized and improved in the future.Affected by the temporal and spatial changes of CI and Vcmax,the estimation results of vegetation productivity are slightly lower than the default situation.The effect of Vcmax on vegetation productivity estimation is higher than that of CI.

李琪;孙睿;柏佳;张静宇;张赫林

遥感科学国家重点实验室 北京市陆表遥感数据产品工程技术研究中心 北京师范大学地理科学学部 北京 100875

林学

植被生产力BEPS模型聚集指数最大羧化速率

vegetation productivityBEPS modelclumping indexmaximum carboxylation rate

《林业科学》 2024 (006)

25-36 / 12

国家自然基金面上项目(42271330);国家重点研发计划课题(2021YFB3901201).

10.11707/j.1001-7488.LYKX20230266

评论