基于机器学习的生物雷达非接触识别头部特定动作方法研究OACSTPCD
Research on Non-Contact Recognition of Specific Head Movements by Bioradar Based on Machine Learning
目的 提出一种基于生物雷达传感器的头部特定动作非接触识别方法.方法 首先对头部特定动作——静止、点头、左转、右转、后倾、张嘴、左点头、右点头采集雷达回波信号;其次,通过时域处理和时频分析得到时域和时频谱2种图像数据;接着从时域和时频域数据中分别提取特征并利用主成分分析法(Principal Component Analysis,PCA)构建更为有效的新特征;最后,运用支持向量机模型(Support Vector Machine,SVM)对新特征进行分类.结果 基于PCA和SVM构建人体动作特征提取方法,并对人体头部动作进行识别,结果显示,不同类型头部动作的分类识别准确率可达88.64%.结论 本文提出的头部动作非接触识别对于阿尔茨海默病患者增强社会交流、延缓病情发展、提升生活质量具有重要意义.
Objective To propose a new method of classification of specific head movement based on non-contact bioradar sensor.Methods Firstly,radar signals were collected for specific head movements——static,nodding,left turn,right turn,leaning back,opening mouth,nodding left and nodding right.Secondly,two kinds of image data were obtained by time domain processing and time frequency analysis and the principal component analysis(PCA)was used to construct new integrated features that were more effective.Thirdly,the support vector machine(SVM)model was used to classify the new features.Results Based on PCA and SVM,a human motion feature extraction method was constructed to recognize human head movements.The results showed that the classification recognition accuracy of different types of head movements could reach 88.64% .Conclusion The non-contact recognition of head movements proposed in this paper is of great significance for enhancing social communication,delaying the development of disease and improving the quality of life of Alzheimer's patients.
徐存卓;张力方;焦腾;吕昊;张杨;王健琪;于霄
空军军医大学军事生物医学工程学系,陕西西安 710032空军军医大学军事生物医学工程学系,陕西西安 710032||陕西省生物电磁检测与智能感知重点实验室,陕西西安 710032
电子信息工程
机器学习非接触检测生物雷达主成分分析法头部动作
machine learningnon-contact detectionbioradarprincipal component analysishead movements
《中国医疗设备》 2024 (007)
1-7,13 / 8
国家重点研发计划(2021YFC1200104);陕西省重点研发计划项目(2024SF-YBXM-454);空军军医大学珠峰工程(2020ZFB009).
评论