| 注册
首页|期刊导航|中国医疗设备|基于机器学习的生物雷达非接触识别头部特定动作方法研究

基于机器学习的生物雷达非接触识别头部特定动作方法研究

徐存卓 张力方 焦腾 吕昊 张杨 王健琪 于霄

中国医疗设备2024,Vol.39Issue(7):1-7,13,8.
中国医疗设备2024,Vol.39Issue(7):1-7,13,8.DOI:10.3969/j.issn.1674-1633.2024.07.001

基于机器学习的生物雷达非接触识别头部特定动作方法研究

Research on Non-Contact Recognition of Specific Head Movements by Bioradar Based on Machine Learning

徐存卓 1张力方 1焦腾 2吕昊 2张杨 2王健琪 2于霄2

作者信息

  • 1. 空军军医大学军事生物医学工程学系,陕西西安 710032
  • 2. 空军军医大学军事生物医学工程学系,陕西西安 710032||陕西省生物电磁检测与智能感知重点实验室,陕西西安 710032
  • 折叠

摘要

Abstract

Objective To propose a new method of classification of specific head movement based on non-contact bioradar sensor.Methods Firstly,radar signals were collected for specific head movements——static,nodding,left turn,right turn,leaning back,opening mouth,nodding left and nodding right.Secondly,two kinds of image data were obtained by time domain processing and time frequency analysis and the principal component analysis(PCA)was used to construct new integrated features that were more effective.Thirdly,the support vector machine(SVM)model was used to classify the new features.Results Based on PCA and SVM,a human motion feature extraction method was constructed to recognize human head movements.The results showed that the classification recognition accuracy of different types of head movements could reach 88.64% .Conclusion The non-contact recognition of head movements proposed in this paper is of great significance for enhancing social communication,delaying the development of disease and improving the quality of life of Alzheimer's patients.

关键词

机器学习/非接触检测/生物雷达/主成分分析法/头部动作

Key words

machine learning/non-contact detection/bioradar/principal component analysis/head movements

分类

信息技术与安全科学

引用本文复制引用

徐存卓,张力方,焦腾,吕昊,张杨,王健琪,于霄..基于机器学习的生物雷达非接触识别头部特定动作方法研究[J].中国医疗设备,2024,39(7):1-7,13,8.

基金项目

国家重点研发计划(2021YFC1200104) (2021YFC1200104)

陕西省重点研发计划项目(2024SF-YBXM-454) (2024SF-YBXM-454)

空军军医大学珠峰工程(2020ZFB009). (2020ZFB009)

中国医疗设备

OACSTPCD

1674-1633

访问量0
|
下载量0
段落导航相关论文