| 注册
首页|期刊导航|测控技术|基于BiLRCN和注意力机制的脉搏波血压测量

基于BiLRCN和注意力机制的脉搏波血压测量

陈晓 王志雄 杨瑶

测控技术2024,Vol.43Issue(7):23-30,70,9.
测控技术2024,Vol.43Issue(7):23-30,70,9.DOI:10.19708/j.ckjs.2024.02.208

基于BiLRCN和注意力机制的脉搏波血压测量

Pulse Wave Blood Pressure Measurement Based on BiLRCN and Attention Mechanism

陈晓 1王志雄 2杨瑶2

作者信息

  • 1. 南京信息工程大学电子与信息工程学院,江苏南京 210044||南京信息工程大学江苏省大气环境与装备技术协同创新中心,江苏南京 210044
  • 2. 南京信息工程大学电子与信息工程学院,江苏南京 210044
  • 折叠

摘要

Abstract

To improve the accuracy of noninvasive blood pressure measurement,a pulse wave blood pressure measurement method based on bidirectional long-term recurrent convolutional network(BiLRCN)and attention mechanism is proposed.The high-dimensional features of the photovolumetric pulse signal are extracted by two convolutional neural network(CNN),which is used as the input of bidirectional long short-term memory(BiL-STM)network,and the feature information in the forward and backward directions of the input sequence is ex-tracted by BiLRCN for prediction.The attention mechanism is used to automatically assign the weighted fea-tures,which gives a larger weight to the important moments of the pulse feature data,and the two fully connect-ed layers are used to obtain the blood pressure measurement value.The proposed method is compared with CNN,long short-term memory(LSTM)network,BiLSTM network,and long term recurrent convolutional neural network(LRCN)methods in terms of convergence speed and blood pressure measurement.The experimental re-sults show that the proposed method decreases the mean square error by 21.63%,decreases the mean absolute error by 67.5%,and improves the coefficient of deterministic correlation by 0.42%compared to LRCN.The proposed method has faster convergence and higher accuracy of blood pressure measurement.

关键词

深度学习/脉搏波/血压测量/双向长期递归卷积网络/注意力机制

Key words

deep learning/pulse wave/blood pressure measurement/BiLRCN/attention mechanism

分类

信息技术与安全科学

引用本文复制引用

陈晓,王志雄,杨瑶..基于BiLRCN和注意力机制的脉搏波血压测量[J].测控技术,2024,43(7):23-30,70,9.

测控技术

OACSTPCD

1000-8829

访问量0
|
下载量0
段落导航相关论文