|国家科技期刊平台
首页|期刊导航|测控技术|基于BiLRCN和注意力机制的脉搏波血压测量

基于BiLRCN和注意力机制的脉搏波血压测量OACSTPCD

Pulse Wave Blood Pressure Measurement Based on BiLRCN and Attention Mechanism

中文摘要英文摘要

为了提高无创血压测量的精度,提出了基于双向长期递归卷积网络(Bidirectional Long-term Recur-rent Convolutional Network,BiLRCN)和注意力机制的脉搏波血压测量方 法.通过2个卷积神经网络(Convolutional Neural Network,CNN)层提取出光电容积脉搏信号的高维度特征,将其作为双向长短期记忆(Bidirectional Long Short-Term Memory,BiLSTM)网络的输入,通过BiLSTM提取输入序列前后向的特征信息进行预测;根据注意力机制自动分配权重的特征,给予重要时刻脉搏特征数据较大的权重,并通过2个全连接层得到血压的测量值.将所提出的方法与CNN、长短期记忆(Long Short-Term Memory,LSTM)网络、BiLSTM 网络、长期递归卷积神经网络(Long-term Recurrent Convolutional Network,LRCN)方法进行了收敛速度和血压测量的对比实验.实验结果表明,所提出的方法较LRCN均方误差降低了21.63%,平均绝对误差降低了 67.5%,确定性相关系数提高了 0.42%.所提出的方法的收敛速度更快、血压测量精度更高.

To improve the accuracy of noninvasive blood pressure measurement,a pulse wave blood pressure measurement method based on bidirectional long-term recurrent convolutional network(BiLRCN)and attention mechanism is proposed.The high-dimensional features of the photovolumetric pulse signal are extracted by two convolutional neural network(CNN),which is used as the input of bidirectional long short-term memory(BiL-STM)network,and the feature information in the forward and backward directions of the input sequence is ex-tracted by BiLRCN for prediction.The attention mechanism is used to automatically assign the weighted fea-tures,which gives a larger weight to the important moments of the pulse feature data,and the two fully connect-ed layers are used to obtain the blood pressure measurement value.The proposed method is compared with CNN,long short-term memory(LSTM)network,BiLSTM network,and long term recurrent convolutional neural network(LRCN)methods in terms of convergence speed and blood pressure measurement.The experimental re-sults show that the proposed method decreases the mean square error by 21.63%,decreases the mean absolute error by 67.5%,and improves the coefficient of deterministic correlation by 0.42%compared to LRCN.The proposed method has faster convergence and higher accuracy of blood pressure measurement.

陈晓;王志雄;杨瑶

南京信息工程大学电子与信息工程学院,江苏南京 210044||南京信息工程大学江苏省大气环境与装备技术协同创新中心,江苏南京 210044南京信息工程大学电子与信息工程学院,江苏南京 210044

计算机与自动化

深度学习脉搏波血压测量双向长期递归卷积网络注意力机制

deep learningpulse waveblood pressure measurementBiLRCNattention mechanism

《测控技术》 2024 (007)

23-30,70 / 9

10.19708/j.ckjs.2024.02.208

评论