|国家科技期刊平台
首页|期刊导航|电力建设|大规模风光储场站群功率跟踪优化控制实时仿真

大规模风光储场站群功率跟踪优化控制实时仿真OA北大核心CSTPCD

Real-time Simulation of Optimal Power Tracking Control for Large-Scale Wind-Photovoltaic-Storage Power Station Clusters

中文摘要英文摘要

"双碳"目标下,风光储场站群将成为新型电力系统电源侧的典型形态,功率跟踪控制是其并网运行应具备的基本能力.提出一种考虑储能寿命损耗的风光储场站群功率跟踪优化控制策略及其闭环仿真方法.首先,以某地大规模风光储场站群示范工程作为仿真对象,搭建了基于实时数字仿真器(real time digital simulator,RTDS)的硬件在环实时仿真平台;然后,考虑储能运行状态对储能寿命衰减的影响,建立了精细化的储能寿命退化模型,并进一步提出基于储能等寿命退化的风光储场站群功率指令分配策略和基于储能实时补偿的风光储场站指令跟踪策略.最后,通过对不同测试工况、不同时间尺度的算例闭环仿真测试,验证了所提控制策略的有效性和鲁棒性.

Wind-photovoltaic-storage power station clusters will become the typical form of power source in new electrical systems with the goals of"carbon peaking and carbon neutrality."Power tracking control is a fundamental capability required for grid integration.Based on this,we propose a power-tracking optimization control strategy that considers the lifespan degradation of the energy storage along with a closed-loop simulation method.First,a simulation platform,based on a hardware-in-the-loop real-time digital simulator(RTDS),was constructed using a large-scale wind-photovoltaic-storage power station cluster demonstration project in a certain area as the simulation object.Next,a refined degradation model for the energy storage lifespan was established considering the impact of its operational state.Furthermore,a power allocation strategy based on energy storage lifespan degradation and a command-tracking strategy based on the real-time compensation of energy storage are proposed.Finally,the effectiveness and robustness of the proposed control strategies are verified through closed-loop simulation tests covering different operating conditions and time scales.

孙浩男;杜鹏;刘念;杨珞妍;张玮;胡德鹏

新能源电力系统全国重点实验室(华北电力大学),北京市 102206中国长江三峡集团有限公司科学技术研究院,北京市 100038

动力与电气工程

风光储场站群功率跟踪实时仿真寿命衰减等寿命退化微增率

wind-photovoltaic-storage power station clusterspower trackingreal-time simulationlifespan degradationequal-lifespan degradationmicro-increment rate

《电力建设》 2024 (008)

62-74 / 13

This work is supported by National Key R&D Program of China(No.2021YFB2400700). 国家重点研发计划资助项目(2021YFB2400700);中国长江三峡集团有限公司科研项目资助(202103368)

10.12204/j.issn.1000-7229.2024.08.006

评论