| 注册
首页|期刊导航|电力信息与通信技术|基于DAE和改进RFKM的负荷数据精准特征提取与标签定义

基于DAE和改进RFKM的负荷数据精准特征提取与标签定义

刘礼 杨佳轩 强仁 龚钢军 陆俊 武昕

电力信息与通信技术2024,Vol.22Issue(7):35-44,10.
电力信息与通信技术2024,Vol.22Issue(7):35-44,10.DOI:10.16543/j.2095-641x.electric.power.ict.2024.07.05

基于DAE和改进RFKM的负荷数据精准特征提取与标签定义

Accurate Feature Extraction and Label Definition of Load Data Based on DAE and Improved RFKM

刘礼 1杨佳轩 1强仁 1龚钢军 1陆俊 1武昕1

作者信息

  • 1. 北京市能源电力信息安全工程技术研究中心(华北电力大学),北京市 昌平区 102206
  • 折叠

摘要

Abstract

Aiming at the problems of difficult feature extraction of high-dimensional time series data of user load data,difficult cross-data clustering processing,and difficult accurate labeling of load data in distribution network,this paper proposes a feature extraction and label definition model based on DAE and improve RFKM (FLMbD-iR) for user load data based on denoising autoencoder and improved rough fuzzy K-means. After the deep feature extraction of the original user load data by the denoising autoencoder,FLMbD-iR uses the rough fuzzy K-means based on the imbalanced measure of cluster sizes,and deals with the error of the cross data between clusters in the clustering. Finally,the description index is constructed to label the typical daily load curve. The experiment uses the American power load data for simulation. The experimental results show that this method has a significant effect on the clustering processing of user load data.

关键词

负荷聚类/降噪自编码器/粗糙模糊K-means聚类/类簇规模不均衡度量/精准特征提取

Key words

load clustering/denoising autoencoder/rough fuzzy K-means clustering/imbalanced measure of cluster sizes/accurate feature extraction

分类

信息技术与安全科学

引用本文复制引用

刘礼,杨佳轩,强仁,龚钢军,陆俊,武昕..基于DAE和改进RFKM的负荷数据精准特征提取与标签定义[J].电力信息与通信技术,2024,22(7):35-44,10.

基金项目

国家重点研发计划项目(2022YFB3105101). (2022YFB3105101)

电力信息与通信技术

OACSTPCD

1672-4844

访问量0
|
下载量0
段落导航相关论文