| 注册
首页|期刊导航|电力信息与通信技术|基于用电特性分析的充电桩电价执行异常识别方法

基于用电特性分析的充电桩电价执行异常识别方法

陈曦鸣 杨强 郑抗震 张静 刘辉舟 倪妍妍 张文 陈雁 李国强

电力信息与通信技术2024,Vol.22Issue(7):53-58,6.
电力信息与通信技术2024,Vol.22Issue(7):53-58,6.DOI:10.16543/j.2095-641x.electric.power.ict.2024.07.07

基于用电特性分析的充电桩电价执行异常识别方法

Method for Identifying Abnormal Electricity Price Execution in Charging Stations Based on Electricity Consumption Characteristics Analysis

陈曦鸣 1杨强 2郑抗震 1张静 2刘辉舟 3倪妍妍 1张文 2陈雁 2李国强2

作者信息

  • 1. 国网安徽省电力有限公司营销服务中心,安徽省合肥市 230088
  • 2. 北京中电普华信息技术有限公司,北京市海淀区 100192
  • 3. 国网安徽省电力有限公司,安徽省合肥市 230022
  • 折叠

摘要

Abstract

With the increasingly prominent issues of global warming and environmental pollution,new energy vehicles have gradually become an inevitable trend in the development of the automotive industry. Due to the low setting of charging prices for new energy electric vehicles,many charging stations have defaulted on electricity usage due to "high prices and low connections". Using mutual information algorithm to extract effective behavioral characteristics indicators of charging station users,combined with principal component analysis and KNN classification algorithm,an intelligent recognition model for abnormal electricity price execution of charging stations is constructed,which quickly and accurately locates defaulting electricity users,greatly improving the efficiency of inspection work. By analyzing examples and comparing multiple evaluation indicators such as precision,recall,F1 value,ROC curve,AUC value,etc.,the effectiveness of the model is verified.

关键词

充电桩/电价执行异常/互信息/KNN算法/高价低接

Key words

charging station/abnormal execution of electricity price/mutual information/KNN algorithm/high price low connection

分类

信息技术与安全科学

引用本文复制引用

陈曦鸣,杨强,郑抗震,张静,刘辉舟,倪妍妍,张文,陈雁,李国强..基于用电特性分析的充电桩电价执行异常识别方法[J].电力信息与通信技术,2024,22(7):53-58,6.

基金项目

国家自然科学基金项目(72071070). (72071070)

电力信息与通信技术

OACSTPCD

1672-4844

访问量0
|
下载量0
段落导航相关论文