|国家科技期刊平台
首页|期刊导航|电力信息与通信技术|基于用电特性分析的充电桩电价执行异常识别方法

基于用电特性分析的充电桩电价执行异常识别方法OACSTPCD

Method for Identifying Abnormal Electricity Price Execution in Charging Stations Based on Electricity Consumption Characteristics Analysis

中文摘要英文摘要

随着全球变暖和环境污染问题日益突出,新能源汽车逐渐成为汽车产业发展的必然趋势.由于新能源电动汽车充电电价设定较低,出现了很多充电桩"高价低接"违约用电行为.文章采用互信息算法提炼有效的充电桩用户行为特征指标,结合主成分分析与最近邻(K-nearest neighbor,KNN)分类算法,构建充电桩电价执行异常智能识别模型,迅速准确定位违约用电用户,极大提高了稽查工作效率.通过实例分析,对比查准率、查全率、F1值、ROC曲线、AUC值等多项评估指标,验证了模型的有效性.

With the increasingly prominent issues of global warming and environmental pollution,new energy vehicles have gradually become an inevitable trend in the development of the automotive industry. Due to the low setting of charging prices for new energy electric vehicles,many charging stations have defaulted on electricity usage due to "high prices and low connections". Using mutual information algorithm to extract effective behavioral characteristics indicators of charging station users,combined with principal component analysis and KNN classification algorithm,an intelligent recognition model for abnormal electricity price execution of charging stations is constructed,which quickly and accurately locates defaulting electricity users,greatly improving the efficiency of inspection work. By analyzing examples and comparing multiple evaluation indicators such as precision,recall,F1 value,ROC curve,AUC value,etc.,the effectiveness of the model is verified.

陈曦鸣;杨强;郑抗震;张静;刘辉舟;倪妍妍;张文;陈雁;李国强

国网安徽省电力有限公司营销服务中心,安徽省合肥市 230088北京中电普华信息技术有限公司,北京市海淀区 100192国网安徽省电力有限公司,安徽省合肥市 230022

动力与电气工程

充电桩电价执行异常互信息KNN算法高价低接

charging stationabnormal execution of electricity pricemutual informationKNN algorithmhigh price low connection

《电力信息与通信技术》 2024 (007)

53-58 / 6

国家自然科学基金项目(72071070).

10.16543/j.2095-641x.electric.power.ict.2024.07.07

评论