| 注册
首页|期刊导航|南方医科大学学报|基于全局-局部注意力机制和YOLOv5的宫颈细胞图像异常检测模型

基于全局-局部注意力机制和YOLOv5的宫颈细胞图像异常检测模型

胡雯然 傅蓉

南方医科大学学报2024,Vol.44Issue(7):1217-1226,10.
南方医科大学学报2024,Vol.44Issue(7):1217-1226,10.DOI:10.12122/j.issn.1673-4254.2024.07.01

基于全局-局部注意力机制和YOLOv5的宫颈细胞图像异常检测模型

Trans-YOLOv5:a YOLOv5-based prior transformer network model for automated detection of abnormal cells or clumps in cervical cytology images

胡雯然 1傅蓉1

作者信息

  • 1. 南方医科大学生物医学工程学院,广东 广州 510515
  • 折叠

摘要

Abstract

The development of various models for automated images screening has significantly enhanced the efficiency and accuracy of cervical cytology image analysis.Single-stage target detection models are capable of fast detection of abnormalities in cervical cytology,but an accurate diagnosis of abnormal cells not only relies on identification of a single cell itself,but also involves the comparison with the surrounding cells.Herein we present the Trans-YOLOv5 model,an automated abnormal cell detection model based on the YOLOv5 model incorporating the global-local attention mechanism to allow efficient multiclassification detection of abnormal cells in cervical cytology images.The experimental results using a large cervical cytology image dataset demonstrated the efficiency and accuracy of this model in comparison with the state-of-the-art methods,with a mAP reaching 65.9%and an AR reaching 53.3%,showing a great potential of this model in automated cervical cancer screening based on cervical cytology images.

关键词

宫颈细胞图像异常检测/YOLOv5/图像处理/全局和局部特征融合

Key words

cervical cancer screening/YOLOv5/image processing/Transformer

引用本文复制引用

胡雯然,傅蓉..基于全局-局部注意力机制和YOLOv5的宫颈细胞图像异常检测模型[J].南方医科大学学报,2024,44(7):1217-1226,10.

基金项目

Supported by National Natural Science Foundation of China(82172020). 国家自然科学基金(82172020) (82172020)

南方医科大学学报

OA北大核心CSTPCDMEDLINE

1673-4254

访问量0
|
下载量0
段落导航相关论文