| 注册
首页|期刊导航|红外技术|基于多尺度及多头注意力的红外与可见光图像融合

基于多尺度及多头注意力的红外与可见光图像融合

李秋恒 邓豪 刘桂华 庞忠祥 唐雪 赵俊琴 卢梦圆

红外技术2024,Vol.46Issue(7):765-774,10.
红外技术2024,Vol.46Issue(7):765-774,10.

基于多尺度及多头注意力的红外与可见光图像融合

Infrared and Visible Images Fusion Method Based on Multi-Scale Features and Multi-head Attention

李秋恒 1邓豪 1刘桂华 1庞忠祥 2唐雪 1赵俊琴 3卢梦圆4

作者信息

  • 1. 西南科技大学 信息工程学院,四川 绵阳 621010||特殊环境机器人技术四川省重点实验室,四川 绵阳 621010
  • 2. 中国电信股份有限公司成都分公司,四川 成都 610066
  • 3. 中国空气动力研究与发展中心 空天技术研究所,四川 绵阳 621006
  • 4. 西南科技大学 信息工程学院,四川 绵阳 621010
  • 折叠

摘要

Abstract

To address the challenges of detail loss and the imbalance between visual detail features and infrared(IR)target features in fused infrared and visible images,this study proposes a fusion method combining multiscale feature fusion and efficient multi-head self-attention(EMSA).The method includes several key steps.1)Multiscale coding network:It utilizes a multiscale coding network to extract multilevel features,enhancing the descriptive capability of the scene.2)Fusion strategy:It combines transformer-based EMSA with dense residual blocks to address the imbalance between local details and overall structure in the fusion process.3)Nested-connection based decoding network:It takes the multilevel fusion map and feeds it into a nested-connection based decoding network to reconstruct the fused result,emphasizing prominent IR targets and rich scene details.Extensive experiments on the TNO and M3FD public datasets demonstrate the efficacy of the proposed method.It achieves superior results in both quantitative metrics and visual comparisons.Specifically,the proposed method excels in targeted detection tasks,demonstrating state-of-the-art performance.This approach not only enhances the fusion quality by effectively preserving detailed information and balancing visual and IR features but also establishes a benchmark in the field of infrared and visible image fusion.

关键词

图像融合/红外与可见光图像/多尺度特征/多头自注意力/Transformer

Key words

image fusion/visible and infrared images/multi-scale features/multi-head self-attention/transformer

分类

计算机与自动化

引用本文复制引用

李秋恒,邓豪,刘桂华,庞忠祥,唐雪,赵俊琴,卢梦圆..基于多尺度及多头注意力的红外与可见光图像融合[J].红外技术,2024,46(7):765-774,10.

基金项目

装备预先研究共用技术项目(50927010302). (50927010302)

红外技术

OA北大核心CSTPCD

1001-8891

访问量0
|
下载量0
段落导航相关论文