非奇异H-矩阵的一组新判据OA北大核心CSTPCD
A New Set of Criteria for Nonsingular H-Matrices
基于广义严格α-对角占优矩阵及其相关概念和性质,通过对矩阵指标集进行划分并构造与之对应的正对角因子及设定新参数的方法,给出一组实用的非奇异H-矩阵新判据,拓广了非奇异H-矩阵的判定范围.最后,通过数值例子说明新判据的有效性.
Based on the generalized strictly α-diagonally dominant matrices and its related concepts and properties,by dividing the matrix index set,forming corresponding positive diagonal factors and setting new parameters,we gave a set of practical new criteria for nonsingular H-matrices,expanding the judgment range of nonsingular H-matrices.Finally,numerical examples were used to illustrate the effectiveness of the new criterion.
陶汶琪;李敏;桑海风;刘畔畔
北华大学数学与统计学院,吉林吉林 132013
数学
非奇异H-矩阵广义严格α-对角占优矩阵不可约α-对角占优矩阵具有非零元素链的α-对角占优矩阵
nonsingular H-matrixgeneralized strictly α-diagonally dominant matrixirreducibleα-diagonally dominant matrixα-diagonal dominant matrix with a nonzero elements chain
《吉林大学学报(理学版)》 2024 (004)
774-780 / 7
国家自然科学基金(批准号:11701013)、吉林省教育厅科学技术研究项目(批准号:JJKH20170022KJ)和吉林省教育科学"十三五"规划一般项目(批准号:GH19057).
评论