融合关键信息与专家网络的生成式文本摘要OA北大核心CSTPCD
Fusing Key Information and Expert Network for Abstractive Text Summarization
针对现有生成式摘要模型生成过程中存在原文本关键信息缺失和内容难控制的问题,提出一种结合抽取方法引导的生成式文本摘要方法.该方法首先通过抽取模型从原文本中获取关键句,然后采用双编码策略,分别编码关键句和新闻文本,使关键信息在解码过程中引导生成摘要,最后引入专家网络在解码时筛选信息,以进一步引导摘要生成.在数据集CNN/Daily Mail和XSum上的实验结果表明,该模型可有效改进生成式文本摘要的性能.该方法在一定程度上提高了生成摘要对原文本关键信息的包含量,同时缓解了生成内容难控制的问题.
Aiming at the problems of missing key information and difficult control of content in the original text during the generation process of existing generative summary models,we proposed a generative text summarization method guided by extraction methods.This method first obtained key sentences from the original text through an extraction model,and then adopted dual encoding strategy to encode key sentences and news text respectively,so that key information was guided to generate a summary during the decoding process.Finally,expert network was introduced to screen information during decoding to further guide the generation of summary.The experimental results on CNN/Daily Mail and XSum datasets show that the proposed model can effectively improve the performance of abstractive text summarization.This method improves the content of key information in the original text for generating summary to a certain extent,while alleviating the problem of difficult control of generated content.
魏盼丽;王红斌
昆明理工大学信息工程与自动化学院,云南省人工智能重点实验室,昆明 650500
计算机与自动化
生成式文本摘要双编码器关键信息专家网络引导感知
abstractive text summarizationdouble encoderkey informationexpert networkguided perception
《吉林大学学报(理学版)》 2024 (004)
951-959 / 9
国家自然科学基金(批准号:61966020)和云南省基础研究计划面上项目(批准号:202202AT070157).
评论