| 注册
首页|期刊导航|机器人|基于行为的多差速机器人强化学习任务监管器设计

基于行为的多差速机器人强化学习任务监管器设计

张祯毅 黄捷

机器人2024,Vol.46Issue(4):397-413,424,18.
机器人2024,Vol.46Issue(4):397-413,424,18.DOI:10.13973/j.cnki.robot.230148

基于行为的多差速机器人强化学习任务监管器设计

Reinforcement Learning Mission Supervisor Design for Behavior-based Differential Drive Robots

张祯毅 1黄捷1

作者信息

  • 1. 福州大学电气工程与自动化学院,福建福州 350108||福州大学5G+工业互联网研究院,福建福州 350108
  • 折叠

摘要

Abstract

A multi-agent reinforcement learning mission supervisor(MARLMS)is designed for differential drive robots using trial-and-error learning.The proposed MARLMS addresses the challenge inherent in behavior-based multi-agent sys-tems,wherein the design of switching rules to determine behavior priorities relies heavily on human intelligence.Building upon the null-space-based behavioral control(NSBC)framework,a differential model is introduced to replace the particle model.Consequently,a paradigm of NSBC with nonholonomic constraints is presented for the first time,enhancing the system robustness to the minimum extremum state.Subsequently,a joint policy is developed to dynamically and intelligent-ly determine behavior priorities by modeling the behavior priority switching problem as a cooperative Markov game.The proposed MARLMS not only eliminates the need for manual design of switching rules but also reduces the computational and storage burdens during online operations.Simulation results demonstrate the superior behavior priority switching perfor-mance of the proposed MARLMS.Furthermore,successful implementation on AgileX Limo robots validates the practicality of the proposed MARLMS.

关键词

差速机器人/行为控制/强化学习/任务监管器/智能决策

Key words

differential drive robot/behavioral control/reinforcement learning/mission supervisor/intelligent decision

引用本文复制引用

张祯毅,黄捷..基于行为的多差速机器人强化学习任务监管器设计[J].机器人,2024,46(4):397-413,424,18.

基金项目

国家自然科学基金(92367109). (92367109)

机器人

OA北大核心CSTPCD

1002-0446

访问量0
|
下载量0
段落导航相关论文