| 注册
首页|期刊导航|机器人|多视角视觉-惯性融合的车间AGV精确导航方法

多视角视觉-惯性融合的车间AGV精确导航方法

王鑫 李耕宇 曾子铭 高焕兵 张吟龙

机器人2024,Vol.46Issue(4):476-487,12.
机器人2024,Vol.46Issue(4):476-487,12.DOI:10.13973/j.cnki.robot.230151

多视角视觉-惯性融合的车间AGV精确导航方法

Multi-view Visual-inertial Fusion for Precise AGV Navigation in Workshops

王鑫 1李耕宇 1曾子铭 2高焕兵 3张吟龙4

作者信息

  • 1. 沈阳建筑大学电气与控制工程学院,辽宁沈阳 110168
  • 2. 深圳职业技术学院汽车与交通学院,广东深圳 518055
  • 3. 山东建筑大学信息与电气工程学院,山东济南 250101||山东省智能建筑技术重点实验室,山东济南 250101
  • 4. 中国科学院网络化控制系统重点实验室,辽宁沈阳 110016||中国科学院沈阳自动化研究所机器人学国家重点实验室,辽宁沈阳 110016
  • 折叠

摘要

Abstract

Aiming to achieve precise navigation of AGVs(automated guided vehicles)in workshops,a real-time multi-view localization method with tightly-coupled visual-inertial fusion is proposed.This method address the challenges faced by existing visual-inertial fusion based localization methods,such as lack of absolute pose,inaccurate estimation of absolute scale,and significant cumulative errors.Firstly,a visual-inertial fusion based AGV navigation framework with global consis-tency is designed to establish a global reference coordinate system and achieve long-term drift correction.Next,a multi-view camera and IMU(inertial measurement unit)joint initialization method is proposed to tackle the issue of inaccurate scale estimation in the initialization phase of visual-inertial fusion.This method utilizes a maximum posteriori probability model to obtain more accurate initialization parameters.Furthermore,a QR(quick response)code based pose correction model is proposed to compensate some keyframes periodically,and thus mitigating the effects of error accumulation and inertial deviation drift in the tracking estimation part.In addition,a pose constraint optimization model is proposed to address the issue of local extremum in the optimization mapping part and improve AGV localization accuracy.Finally,the proposed method is validated on the constructed AGV navigation platform in a workshop and compared against state-of-the-art visual-inertial navigation methods.The results demonstrate the superiority of the proposed method in terms of time efficiency and positioning accuracy.Specifically,translation RMSE(root mean square error)is less than 50 mm,and rotation RMSE is less than 2°.

关键词

AGV(自动导引运输车)/导航/视觉-惯性融合/多视角/二维码/全局一致

Key words

AGV(automated guided vehicle)/navigation/visual-inertial fusion/multi-view/QR(quick response)code/global consistency

引用本文复制引用

王鑫,李耕宇,曾子铭,高焕兵,张吟龙..多视角视觉-惯性融合的车间AGV精确导航方法[J].机器人,2024,46(4):476-487,12.

基金项目

国家自然科学基金(62273332) (62273332)

中国科学院青年创新促进会会员项目(2022201) (2022201)

广东省基础与应用基础研究基金(2023A1515011363). (2023A1515011363)

机器人

OA北大核心CSTPCD

1002-0446

访问量0
|
下载量0
段落导航相关论文