| 注册
首页|期刊导航|计算机工程与应用|融合非负正弦位置编码和混合注意力机制的情感分析模型

融合非负正弦位置编码和混合注意力机制的情感分析模型

郑志超 陈进东 张健

计算机工程与应用2024,Vol.60Issue(15):101-110,10.
计算机工程与应用2024,Vol.60Issue(15):101-110,10.DOI:10.3778/j.issn.1002-8331.2304-0255

融合非负正弦位置编码和混合注意力机制的情感分析模型

Sentiment Classification Model Based on Non-Negative Sinusoidal Positional Encoding and Hybrid Attention Mechanism

郑志超 1陈进东 2张健2

作者信息

  • 1. 北京信息科技大学 计算机学院,北京 100192
  • 2. 北京信息科技大学 经济管理学院,北京 100192||智能决策与大数据应用北京市国际科技合作基地,北京 100192
  • 折叠

摘要

Abstract

NSPEHA-BiLSTM is proposed to address the issues of sequence models in sentiment analysis tasks,such as difficulty in obtaining the relative positional information of text and the loss of critical information when processing long sequences.The model integrates non-negative sinusoidal position encoding(NSPE)and hybrid attention mechanism(HAM)to incorporate relative positional information into word embeddings and weight the global and local information features of text using HAM,respectively,ensuring the accurate transmission of critical information.The text features are extracted by Bi-LSTM,and sentiment analysis is performed using a fully connected layer.NSPEHA-BiLSTM achieves higher accu-racy than Bi-LSTM and Text-CNN by 4.67 and 2.02 percentage points,respectively,on the IMDB dataset,and the model performance improves with longer input text.The results also verify that NSPE is superior to other position encodings.

关键词

情感分析/双向长短期记忆网络(Bi-LSTM)/非负正弦位置编码(NSPE)/混合注意力机制(HAM)

Key words

sentiment analysis/bi-directional long short-term memory(Bi-LSTM)/non-negative sinusoidal position encoding(NSPE)/hybrid attention mechanism(HAM)

分类

信息技术与安全科学

引用本文复制引用

郑志超,陈进东,张健..融合非负正弦位置编码和混合注意力机制的情感分析模型[J].计算机工程与应用,2024,60(15):101-110,10.

基金项目

国家重点研发计划课题(2019YFB1405303) (2019YFB1405303)

北京市属高等学校优秀青年人才培育计划项目(BPHR202203233) (BPHR202203233)

国家自然科学基金(72174018). (72174018)

计算机工程与应用

OA北大核心CSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文