基于分散注意力机制的无人机目标跟踪算法OACSTPCD
Target Tracking Algorithm for UAV Based on Split Attention
针对无人机平台的目标跟踪场景中目标小、形变大、背景复杂、易出现目标遮挡等问题,提出了一种基于分散注意力机制的无人机目标跟踪算法.首先,针对背景复杂、目标遮挡问题,在特征提取残差网络中引入分散注意力机制,增加卷积通道间的相互作用,赋予通道间自注意力权重.其次针对小目标、尺度变化大,添加特征金字塔结构,增加高语义信息在特征图中的占比,提高无人机场景下多尺度目标的跟踪能力,提高跟踪精度.在无人机公开数据集UAV123上采用一次通过评估模式进行测试,所提算法精度达到了82.7%,成功率达到了61.6%.实验结果证明论文所提算法的测试结果优于目前主流的目标跟踪算法,有效地提升了无人机在复杂场景下指定目标跟踪的精度和鲁棒性.
A UAV target tracking algorithm based on the distracting attention mechanism is proposed for the target tracking scenarios of UAV platforms with small targets,large deformations,complex backgrounds,and easy target occlusion.Firstly,for the problems of complex background and target occlusion,a distraction mechanism is introduced in the feature extraction residual net-work to increase the interactions between convolution channels and give self-attention weights between channels.Secondly,for small targets and large scale variations,the feature pyramid structure is added to increase the proportion of high semantic informa-tion in the feature map to improve the tracking ability of multi-scale targets in UAV scenes and improve the tracking accuracy.The proposed algorithm is tested on the UAV public dataset UAV123 by using one-pass evaluation mode,and the accuracy of the pro-posed algorithm reaches 82.7%and the success rate reaches 61.6%.The experimental results demonstrate that the test results of the proposed algorithm outperform the current mainstream target tracking algorithms and effectively improve the accuracy and robust-ness of UAV tracking for specified targets in complex scenarios.
王指辉;周嘉麒;廖万斌;印雅萌;翁祥瑞
南京航空航天大学 南京 211106
计算机与自动化
无人机目标跟踪分散注意力机制特征金字塔
UAVobject trackingsplit attentionfeature pyramid
《计算机与数字工程》 2024 (005)
1287-1292 / 6
评论