|国家科技期刊平台
首页|期刊导航|计算机与现代化|基于半监督学习的StyleGAN图像生成模型

基于半监督学习的StyleGAN图像生成模型OACSTPCD

Semi-supervised Image Generation Model Based on StyleGAN

中文摘要英文摘要

StyleGAN是一种基于生成对抗网络的图像生成方法,它在图像生成领域占据着重要的地位.但传统的StyleGAN生成图片质量依赖于训练集样本质量,当训练集图片质量较低时,StyleGAN往往不能很好发挥作用.针对此问题,本文提出一种基于半监督的StyleGAN模型(SG-GAN).对于单个图片的生成,首先根据StyleGAN模型中w向量和图像的一一对应关系,生成训练样本并导入支持向量机(SVM)进行训练.然后,利用SVM和StyleGAN的mapping network在每次生成图像前对w向量进行筛选,挑选合格的w向量生成图像,以提高生成图像质量.对于批量图片的生成,首先经过基因向量生成器生成基因向量并随机组合在一起,采用动态循环回溯算法求得风格向量的所有排列,根据排列结果产生交配后的个体,最后,经过评价函数进行个体的筛选,在模型的多次迭代后,最终找到更加优秀的个体.本文在公开数据集上与几种先进同类方法进行了对比实验,实验结果表明:在lsun猫脸数据集上,模型FID2.74的准确率最高可达 74.2%,召回率可达51.2%.经验证,该模型在lsun数据集上的准确率明显优于StyleGAN模型,进一步证实了该模型的有效性.同时,模型在Cat Dataset,CIFAR-100和ImageNet数据集上均达到70%以上的准确率,从而验证了模型具有不错的泛化性.

This paper introduces SG-GAN,a semi-supervised StyleGAN model that overcomes the limitations of traditional StyleGAN.The quality of generated images using StyleGAN is heavily dependent on the quality of the training data set.When the training image quality is low,StyleGAN often fails to generate high-quality images.To address this issue,SG-GAN generates and trains support vector machine(SVM)training samples based on the one-to-one correspondence between vectors w and im-ages in StyleGAN.SVM and StyleGAN mapping network are then used to screen vectors w before generating each image to im-prove the quality of the resulting images.For batch image generation,gene vectors are generated by the gene vector generator and combined randomly while all permutations of style vectors are obtained using a dynamic cycle backtracking algorithm.Individuals are generated from the permutation results and screened for excellence using an evaluation function after multiple iterations.Ex-periments were carried out on open data sets and compared with other advanced methods,demonstrating that SG-GAN improves upon StyleGAN's accuracy significantly.The model achieves FID 2.74,an accuracy rate of 74.2%,and a recall rate of 51.2%on the lsun cat face data set,further validating the efficacy of the model.At the same time,the model achieved an accuracy of over 70%on the Cat Dataset,CIFAR-100,and ImageNet datasets,thereby verifying its good generalization ability.

王志强;郑爽

北京工业大学信息学部,北京 100020

计算机与自动化

生成对抗网络遗传算法风格向量支持向量机动态循环回溯

generative adversarial networkgenetic algorithmstyle vectorsupport vector machinesdynamic loop backtracking

《计算机与现代化》 2024 (006)

14-18,32 / 6

10.3969/j.issn.1006-2475.2024.06.003

评论