基于多元特征驱动的既有建筑地震损伤机器学习预测方法OA北大核心CSTPCD
Multi-feature-driven prediction of seismic damage for existing buildings using machine learning
城镇既有建筑地震损伤快速预测对城市震后应急响应与快速救援恢复具有重要意义.为实现既有建筑震损状态的快速量化评价,基于多元特征和机器学习模型驱动,提出了既有建筑地震损伤快速评估与预测方法.针对钢筋混凝土结构,通过实测结构动力特性和HAZUS技术手册中非线性性能参数,建立真实在役建筑的等效数值分析模型;利用ATC-63地震动库和一类数据驱动型非线性损伤评估指标,生成结构地震损伤状态大样本数据集;通过特征工程研究,揭示不同类型特征间的相关性;利用随机森林机器学习模型,实现了基于初始设计特征、实测结构特征、实测地震动特征映射结构地震损伤状态,且测试集决定系数为0.99,相对误差在±20%以内的样本数占比达99.23%;通过模型可解释性分析,揭示了模型输入特征对预测结果的重要性,其中结构模态周期是保障预测结果可靠的重要特征之一;并利用已有地震台站实测记录,成功预测了目标建筑群在该地震动下的损伤状态.所提出的基于多元特征驱动的既有建筑结构地震损伤快速评估方法,具备较高的预测精度和效率.
Rapid prediction of seismic damage of existing buildings is of paramount importance for post-earthquake emergency response and accelerating rescue and recovery in urban regions.To achieve rapid and quantitative diagnosis of the safety of existing buildings,a multi-feature driven method for rapid evaluation and prediction of seismic damage is proposed.For reinforced concrete structures,through measured dynamic properties in-situ and nonlinear performance parameters obtained from HAZUS manual,a numerical model of existing building is developed.Using the ATC-63 ground motion record sets and a data-driven nonlinear damage index,a large database is generated.The feature engineering is adopted to reveal the correlations between various input features.A random forest machine learning model is employed to predict the structural seismic damage quantitatively based on design features,measured structural features,and ground motion features.The coefficient of determination for the test set is 0.99,and the proportion of samples with a relative error within±20%is 99.23%.Model interpretability analyses reveal the importance of various input features on the output results,with structural modal periods being one of the most critical features.Finally,using the data from existing seismic stations,the model successfully predicts the damage condition of the examined existing buildings under a specific ground motion.The result indicates that the proposed framework of seismic damage prediction for existing building structures exhibits ideal predictive accuracy and efficiency.
王律己;黄晨宇;单伽锃;余桦;苏金蓉
同济大学结构防灾减灾工程系,上海 200092同济大学结构防灾减灾工程系,上海 200092||上海韧性城市与智能防灾工程技术研究中心,上海 200092四川省地震局,四川成都 610041
地球科学
既有多龄期建筑多元特征机器学习快速评估损伤评估指标
existing multi-age buildingmulti-featuremachine learningrapid evaluationdamage evaluation index
《建筑结构学报》 2024 (007)
1-12 / 12
国家自然科学基金项目(52278312),上海市青年科技启明星计划(20QC1400700),地震科技星火计划项目(XH21027).
评论