|国家科技期刊平台
首页|期刊导航|控制理论与应用|Seru系统调度优化的知识引导协同进化算法

Seru系统调度优化的知识引导协同进化算法OA北大核心CSTPCD

A knowledge-guided cooperative coevolutionary algorithm for Seru system scheduling optimization

中文摘要英文摘要

作为一种新型的生产模式,Seru系统能够兼顾柔性和效率且快速响应市场,己在装配企业得到广泛应用.为了实现实际生产过程生产效率和劳动效率的协同优化,本文研究以最小化最大完工时间和工人总劳动时间为目标的Seru系统多目标调度问题,提出一种知识引导的协同进化算法.首先,将问题分解为Seru构造和Seru调度,构造两个种群分别优化子问题.同时,设计种群规模的调整策略,通过为有潜力的种群分配更多个体来提高协同搜索的效率.进而,通过分析问题的性质,提炼规则性知识用于设计有效的搜索算子和重生成规则,指导精英个体执行知识驱动的增强搜索,从而进一步提升算法的局部开发能力.通过数值仿真和统计性能对比,验证了算法各设计环节的有效性,并取得了显著优于现有最新算法的多目标调度优化性能.

As a new production mode,Seru system has been widely used in assembly enterprises due to its flexibility,efficiency,and fast response to the market.To optimize the production and labor efficiency simultaneously,this paper investigates the multi-objective scheduling problem of Seru system to minimize the makespan and the total labor time,and a knowledge-guided cooperative coevolutionary algorithm(KCCA)is proposed to solve this problem.First,the problem can be decomposed into two subproblems:Seru formation and Seru scheduling,and two populations are constructed to solve the two subproblems respectively.Meanwhile,to improve the search efficiency,the population size adjustment strategy is designed to allocate more individuals to the more potential population.Moreover,to further enhance the exploitation capability of KCCA,the knowledge is derived by analyzing the problem properties to design effective search operators and rules,which are used to perform the knowledge-guided enhanced search on elite individuals.Computational experiments and statistical comparisons validate the effectiveness of the specific designs of the KCCA,which can achieve a better optimization performance for multi-objective scheduling than state-of-the-art algorithms.

王凌;吴玉婷;陈靖方;潘子肖

清华大学自动化系,北京 100084

赛汝(Seru)生产系统协同搜索知识驱动增强搜索调整策略

Seru production systemcooperative searchknowledge drivenenhanced searchadjustment strategy

《控制理论与应用》 2024 (006)

959-966 / 8

国家自然科学基金项目(62273193)资助.Supported by the National Natural Science Foundation of China(62273193).

10.7641/CTA.2023.20626

评论