| 注册
首页|期刊导航|控制理论与应用|基于鲁棒控制的自适应分数阶梯度优化算法设计

基于鲁棒控制的自适应分数阶梯度优化算法设计

刘佳旭 陈嵩 蔡声泽 许超 褚健

控制理论与应用2024,Vol.41Issue(7):1187-1196,10.
控制理论与应用2024,Vol.41Issue(7):1187-1196,10.DOI:10.7641/CTA.2024.30534

基于鲁棒控制的自适应分数阶梯度优化算法设计

The novel adaptive fractional order gradient decent algorithms design via robust control

刘佳旭 1陈嵩 1蔡声泽 2许超 2褚健3

作者信息

  • 1. 浙江大学数学科学学院,浙江杭州 310030
  • 2. 浙江大学控制科学与工程学院,浙江杭州 310013
  • 3. 宁波工业与互联网研究院,浙江宁波 315177
  • 折叠

摘要

Abstract

The vanilla fractional order gradient descent may converge to a region around the global minimum instead of converging to the exact minimum point,or even diverge,in the case where the objective function is strongly convex.To address this problem,a novel adaptive fractional order gradient descent(AFOGD)method and a novel adaptive fractional order accelerated gradient descent(AFOAGD)method are proposed in this paper.Inspired by the quadratic constraints and Lyapunov stability analysis from robust control theory,we establish a linear matrix inequality to analyse the convergence of our proposed algorithms.We prove that our proposed algorithms can achieve R-l inear convergence when the objective function is L-smooth and m-strongly-convex.Several numerical simulations are demonstrated to verify the effectiveness and superiority of our proposed algorithms.

关键词

梯度下降法/自适应算法/鲁棒控制/分数阶微积分/加速算法

Key words

gradient descent/adaptive algorithm/robust control/fractional order calculus/accelerated algorithm

引用本文复制引用

刘佳旭,陈嵩,蔡声泽,许超,褚健..基于鲁棒控制的自适应分数阶梯度优化算法设计[J].控制理论与应用,2024,41(7):1187-1196,10.

基金项目

Supported by the Science and Technology Innovation 2030 New Generation Artificial Intelligence Major Project(2018AAA0100902),the National Key Research and Development Program of China(2019YFB1705800)and the National Natural Science Foundation of China(61973270). (2018AAA0100902)

控制理论与应用

OA北大核心CSTPCD

1000-8152

访问量0
|
下载量0
段落导航相关论文