| 注册
首页|期刊导航|粮油食品科技|基于改进HSV空间的机器视觉花生霉变检测方法

基于改进HSV空间的机器视觉花生霉变检测方法

丁灿 王文胜 黄小龙

粮油食品科技2024,Vol.32Issue(4):178-184,7.
粮油食品科技2024,Vol.32Issue(4):178-184,7.DOI:10.16210/j.cnki.1007-7561.2024.04.022

基于改进HSV空间的机器视觉花生霉变检测方法

Machine Vision Detection Method for Peanut Mold Based on Improved HSV Space

丁灿 1王文胜 1黄小龙1

作者信息

  • 1. 北京信息科技大学 机电工程学院,北京 100192
  • 折叠

摘要

Abstract

The aflatoxin produced by peanut mildew is highly carcinogenic,and it seriously affects food safety.In order to accurately and quickly identify moldy peanuts,this project proposes a detection method for moldy peanuts based on machine vision.Firstly,the peanut image was double-sided filtering and noise reduction,and then the image was converted to HSV space.The moldy peanut was recognized and detected by superimposing the mold color range extracted in H and S space and the open processing results of V space.The experimental results showed that the recognition accuracy of this method for moldy peanuts reached 95.3%,and the processing time for a single frame of peanut image was 0.6 seconds.Compared with other algorithms,this method had the advantages of fast speed and high accuracy,which can meet the real-time detection of moldy peanuts.At the same time,the grading processing of peanut mold is also more practical.

关键词

霉变花生/机器视觉/HSV色彩空间/图像处理/双边滤波

Key words

moldy peanuts/machine vision/HSV color space/image processing/bilateral filtering

分类

轻工纺织

引用本文复制引用

丁灿,王文胜,黄小龙..基于改进HSV空间的机器视觉花生霉变检测方法[J].粮油食品科技,2024,32(4):178-184,7.

基金项目

国家重点研发计划(2020YFB1713205) (2020YFB1713205)

北京信息科技大学"青年骨干教师"支持计划(YBT202403) National Key Research and Development Project of China(No.2020YFB1713205) (YBT202403)

Young Backbone Teacher Support Plan of Beijing Information Science and Technology University(No.YBT202403) (No.YBT202403)

粮油食品科技

OA北大核心CSTPCD

1007-7561

访问量0
|
下载量0
段落导航相关论文