吸湿性催化剂人工消暖雾大型雾室试验及机理研究OA北大核心CSTPCD
Cloud chamber investigation into the mechanisms of artificial warm fog dissipation using hygroscopic materials
雾给现代交通和人类身体健康造成严重影响,人工消雾对于防灾减灾具有重要价值.但目前关于消雾机理仍存在一定争议,关于催化剂粒径的选择也具有较大不确定性.本研究基于15 000 m3大型雾室,开展了不同粒径催化剂颗粒对暖雾清除效果的研究.结果表明:A催化剂(粒径为75 μm)具有良好的消雾能力,消雾时间约为自然沉降的20%;B催化剂(粒径为100 μm)消雾时间约为自然沉降的40%,消雾效果相比A催化剂偏差.为验证和计算最优催化剂粒径,本研究利用重力连续碰并增长模型,从理论上分析了消雾催化剂的最优粒径.结果表明:催化剂颗粒过小,捕获的雾滴少,碰并耗水少,消雾时间长;催化剂颗粒过大,下降速度快,消雾时间短,但捕获的雾滴少,碰并耗水少.综合来看,最优的催化剂颗粒直径为40-80 μm.本研究结果可为外场消雾试验提供科学参考.
Heavy fog significantly impacts modern transportation and public health.Thus,artificial fog dispersal crucial for disaster prevention and mitigation.Despite its importance,the mechanism underlying fog dispersal and the optimal particle size of dispersal catalyst remains uncertain.This study,conducted in a 15 000 cubic meter cloud chamber,explores the influence of different catalyst particle sizes on warm fog clearance.We found that cat-alyst A,with a particle size of 75 pm,effectively reduced the number concentration of fog droplets from 5 800 g/cm3 to 2 000 g/cm3 within 8 minutes and further to 1 000 g/cm3 within 10 minutes,while decreasing the liquid water content from 2.45 g/m3 to 0.2 g/m3.The mean volume diameter of the fog droplets increased from 6-8μm to 10-20 μm,accelerating the fog clearance to 20%of the time required for natural sedimentation.In con-trast,Catalyst B(with a particle size of 100 µm)induced raindrop formation under heavy fog conditions,clearing the fog in 40%of the time taken by natural sedimentation,albeit with slightly less effectiveness than cata-lyst A. To determine the optimal catalyst particle size,we employed a gravitational continuous collision and growth model to evaluate the fog dispersal efficacy of different particle sizes,providing a theoretical basis for selecting the most effective size.Theoretical calculations suggest that for a droplet radius of 6 μm in a 25 m high cloud chamber,the collision efficiencies catalyst particles sized 50 µm and 100 μm are comparable(approximately 80%),requiring a catalyst mass of 3.52 kg.Ho we ver,the dispersal for 50 µm radius particles is twice as long as for 100 µm particles.The study indicates that for droplets radii of 6-15 µm,catalyst particles in the 60-100 μm range are most effective. Further analysis revealed that excessively small catalyst particles capture fewer fog droplets,require more time for fog dispersal,and consume less water during collisions.Conversely,overly large catalyst particles clear fog faster and have higher descent speed but are less effective in water consumption and droplet capture.There-fore,an optimal catalyst particle diameter of 40-80 µm is suggested.The findings presented here are based on a simplified gravitational continuous collision and growth model and do not consider factors such as vertical velocity and variations in liquid water content with height.Future studies should address these to refine the theoret-ical mechanisms of fog clearance and improve catalyst dosage calculations.
郑鹤鹏;葛攀延;解妍琼;张云;余婷;黄梦宇;田平;毕凯;丁德平;余昊翔
国防科技大学气象海洋学院,湖南长沙 410073南京信息工程大学气象灾害预报预警与评估协同创新中心/中国气象局气溶胶与云降水重点开放实验室,江苏南京 210044国防科技大学前沿交叉学科学院,湖南长沙 410073北京市人工影响天气中心,北京 100089
大型雾室消雾试验吸湿性催化剂重力连续碰并增长模型能见度
large-scale cloud chamberfog elimination testmoisture absorbent catalystgravitational continuous coagulation and growth modelvisibility
《大气科学学报》 2024 (004)
620-628 / 9
国家自然科学基金资助项目(42075080)
评论