| 注册
首页|期刊导航|气象科学|基于时空图卷积的强对流降水临近预报研究

基于时空图卷积的强对流降水临近预报研究

方巍 薛琼莹 陶恩屹 齐媚涵

气象科学2024,Vol.44Issue(3):487-497,11.
气象科学2024,Vol.44Issue(3):487-497,11.DOI:10.12306/2024jms.0023

基于时空图卷积的强对流降水临近预报研究

A study on the proximity prediction of strong convective precipitation based on the spatio-temporal graph convolution

方巍 1薛琼莹 2陶恩屹 2齐媚涵2

作者信息

  • 1. 南京信息工程大学计算机学院/数字取证教育部工程研究中心,南京 210044||中国气象局交通气象重点开放实验室/南京气象科技创新研究院,南京 210041||南京信息工程大学江苏省大气环境与装备技术协同创新中心,南京 210044
  • 2. 南京信息工程大学计算机学院/数字取证教育部工程研究中心,南京 210044
  • 折叠

摘要

Abstract

Precipitation nowcasting plays an important supporting role in forecasting severe convective weather.In meteorological services,the radar echo extrapolation method is mainly used to solve precipitation nowcasting problems.However,existing methods often lack the ability to effectively learn from sequential radar data,resulting in poor prediction accuracy.In order to solve this problem,this paper proposed ASTGCN(A Spatio-Temporal Graph Convolution Neural Network)for nowcasting of severe convective precipitation.Efficiently capture the temporal dependence between adjacent radar frames using a spatio-temporal graph convolutional network.In addition,an attention mechanism and an autoencoder were utilized to enhance the model's ability to capture spatio-temporal correlations.Experimental results show that the model can discover hidden graph structures from data and thereby capture hidden spatial relationships.Compared with the existing model(Transformer),the Critical Success Index(CSI)of this model is improved by 28%,indicating its superior performance in the nowcasting of severe convective precipitation.

关键词

强对流降水临近预报/深度学习/ASTGCN模型/注意力机制/雷达回波外推

Key words

nowcasting of severe convective precipitation/deep learning/ASTGCN model/attention mechanism/radar echo extrapolation

分类

天文与地球科学

引用本文复制引用

方巍,薛琼莹,陶恩屹,齐媚涵..基于时空图卷积的强对流降水临近预报研究[J].气象科学,2024,44(3):487-497,11.

基金项目

国家自然科学基金资助项目(42075007) (42075007)

苏州大学计算机信息处理技术重点实验室开放项目(KJS2275) (KJS2275)

南京气象科技创新研究院北极阁开放研究基金资助项目(BJG202306) (BJG202306)

江苏省研究生科研与实践创新计划项目(NO.KYCX23_1388) (NO.KYCX23_1388)

气象科学

OACSTPCD

1009-0827

访问量0
|
下载量0
段落导航相关论文