| 注册
首页|期刊导航|软件导刊|基于深度学习的腰椎间盘突出症辅助诊断

基于深度学习的腰椎间盘突出症辅助诊断

张新菊 崔亚轩 胥义 付强

软件导刊2024,Vol.23Issue(7):34-39,6.
软件导刊2024,Vol.23Issue(7):34-39,6.DOI:10.11907/rjdk.231713

基于深度学习的腰椎间盘突出症辅助诊断

Assisted Diagnosis of Lumbar Disc Herniation Based on Deep Learning

张新菊 1崔亚轩 1胥义 1付强2

作者信息

  • 1. 上海理工大学 健康科学与工程学院,上海 200082
  • 2. 上海理工大学 健康科学与工程学院,上海 200082||上海市第一人民医院 脊柱外科,上海 200080
  • 折叠

摘要

Abstract

Aiming at the problem of difficulty in intelligent assisted diagnosis of complex lumbar spine bone structure,a deep learning based computer-aided diagnostic method framework is proposed to assist in the diagnosis of lumbar disc herniation(LDH).Firstly,a Resblock mod-ule is added to the encoding and decoding process of U-Net while preserving the skip connections of U-Net to enhance feature transfer in the target area,reduce feature loss,and accelerate model convergence speed.Secondly,the minimum envelope rectangle method is used to locate the center of the vertebrae,and ROI of appropriate size is cropped on the sagittal plane of the vertebrae based on the positioning,achieving ful-ly automatic ROI acquisition.Finally,in the Xception network,average pooling is used instead of Flatten operation,and BN layer,Droupout layer,and dynamic learning rate are added to improve the speed and accuracy of the model.Regarding the MRI case of lumbar disc herniation in a certain hospital in Shanghai,after evaluating and training the classification model evaluation criteria,it was found that the proposed framework had a diagnostic accuracy of 94.46%for ACC,94.60%for specific SPE,97.09%for sensitivity SEN,and 94.32%for accuracy PRE.Compared with previous studies,this has been improved,which is of great significance for promoting the clinical application of comput-er-aided diagnosis.

关键词

深度学习/U-Net/腰椎间盘突出症诊断/Xception/椎骨分割/智能辅助诊断

Key words

deep learning/U-Net/diagnosis of lumbar disc herniation/Xception/segmentation of vertebrae/intelligent aided diagnosis

分类

信息技术与安全科学

引用本文复制引用

张新菊,崔亚轩,胥义,付强..基于深度学习的腰椎间盘突出症辅助诊断[J].软件导刊,2024,23(7):34-39,6.

基金项目

国家自然科学基金项目(52076140) (52076140)

软件导刊

1672-7800

访问量0
|
下载量0
段落导航相关论文