| 注册
首页|期刊导航|软件导刊|基于LDA与双向GRU的借阅主题热度预测

基于LDA与双向GRU的借阅主题热度预测

陈志辉 吴克晴 陈嘉超 秦泽豪

软件导刊2024,Vol.23Issue(7):51-57,7.
软件导刊2024,Vol.23Issue(7):51-57,7.DOI:10.11907/rjdk.231685

基于LDA与双向GRU的借阅主题热度预测

Prediction of Book Borrowing Topic Heat Based on Latent Dirichlet Allocation and Bidirectional Gate Recurrent Unit

陈志辉 1吴克晴 2陈嘉超 1秦泽豪1

作者信息

  • 1. 江西理工大学 理学院,江西 赣州 341000||嘉兴学院 信息科学与工程学院,浙江 嘉兴 314000
  • 2. 江西理工大学 理学院,江西 赣州 341000
  • 折叠

摘要

Abstract

The analysis of book borrowing theme can mine read borrowing preferences and reading rules of readers.By using the prediction model of borrowing theme heat,it can predict the change trend of borrowing theme heat,which is of great significance for libraries to carry out reading promotion activities.In order to solve the problem of book borrowing topic extraction and topic heat prediction,this paper proposes a borrowing topic heat prediction model based on LDA and bidirectional GRU neural network.The algorithm extracts the borrowing book features and borrowing topics of readers in different time periods through LDA algorithm.On the basis of calculating the heat of borrowing topics in dif-ferent time periods and constructing the data set of borrowing topic heat sequence,a topic heat prediction model based on bidirectional GRU neural network is constructed to predict the change trend of future topic heat,and the experimental evaluation is carried out on the paper litera-ture borrowing record data set of Xiamen University Library.The simulation results show that the model can accurately obtain the relationship between borrowing topics and keywords,and compared with algorithms such as machine learning,the model can effectively reduce the predic-tion error of borrowing topics.

关键词

热度预测/借阅主题发现/深度学习/双向门控循环单元/潜在狄利克雷分配

Key words

heat prediction/borrowing topics discover/deep learning/bidirectional gated recurrent unit/latent Dirichlet allocation

分类

信息技术与安全科学

引用本文复制引用

陈志辉,吴克晴,陈嘉超,秦泽豪..基于LDA与双向GRU的借阅主题热度预测[J].软件导刊,2024,23(7):51-57,7.

软件导刊

1672-7800

访问量0
|
下载量0
段落导航相关论文