| 注册
首页|期刊导航|食品科学|基于CNN-GRU-AE的蓝莓货架期预测模型研究

基于CNN-GRU-AE的蓝莓货架期预测模型研究

张润泽 冯国红 付晟宏 王宏恩 高珊 朱玉杰 刘中深

食品科学2024,Vol.45Issue(13):229-238,10.
食品科学2024,Vol.45Issue(13):229-238,10.DOI:10.7506/spkx1002-6630-20230701-005

基于CNN-GRU-AE的蓝莓货架期预测模型研究

Convolutional Neural Network-Gated Recurrent Unit-Attention Based Model for Blueberry Shelf Life Prediction

张润泽 1冯国红 1付晟宏 1王宏恩 1高珊 2朱玉杰 1刘中深3

作者信息

  • 1. 东北林业大学机电工程学院,黑龙江哈尔滨 150040
  • 2. 东北林业大学土木与交通学院,黑龙江哈尔滨 150040
  • 3. 黑龙江农业工程职业学院生物制药学院,黑龙江哈尔滨 150025
  • 折叠

摘要

Abstract

In order to investigate the quality changes and shelf life of blueberries stored in different temperature,21 quality indexes,including color parameters,mass loss rate,spoilage rate and texture parameters,were measured on"Freedom"blueberries at three storage temperatures(0,4 and 25 ℃).Using five machine learning algorithms with a self-contained function of feature selection,seven key features affecting the shelf life were selected as input variables to construct a shelf life prediction model using gated recurrent unit(GRU)alone or in combination with convolutional neural network(CNN)and/or attention(AE)mechanism.The results showed that compared with the GRU model,the mean absolute error(MAE),mean square error(MSE)and mean absolute percentage error(MAPE)of the CNN-GRU-AE model decreased by 75.83%,91.46%,61.58%,respectively,and the coefficient and determination increased by 2.25%,indicating significantly improved accuracy of shelf-life prediction.This study provides theoretical support for the shelf life prediction of blueberries at different storage temperatures.

关键词

蓝莓/货架期预测/卷积神经网络/门控循环单元/注意力机制

Key words

blueberry/shelf life prediction/convolutional neural network/gated recurrent unit/attention mechanism

分类

轻工纺织

引用本文复制引用

张润泽,冯国红,付晟宏,王宏恩,高珊,朱玉杰,刘中深..基于CNN-GRU-AE的蓝莓货架期预测模型研究[J].食品科学,2024,45(13):229-238,10.

基金项目

国家自然科学基金面上项目(32071685) (32071685)

黑龙江省自然科学基金项目(LH2020C050) (LH2020C050)

食品科学

OA北大核心CSTPCD

1002-6630

访问量0
|
下载量0
段落导航相关论文