| 注册
首页|期刊导航|食品与机械|基于机器视觉的苹果表损智能检测系统设计

基于机器视觉的苹果表损智能检测系统设计

秦寅初 李涛 李旭 王美玲 谭治英

食品与机械2024,Vol.40Issue(6):138-142,5.
食品与机械2024,Vol.40Issue(6):138-142,5.DOI:10.13652/j.spjx.1003.5788.2024.80048

基于机器视觉的苹果表损智能检测系统设计

Design of apple damage automatic detection system based on machine vision

秦寅初 1李涛 1李旭 2王美玲 3谭治英2

作者信息

  • 1. 常州大学机械与轨道交通学院,江苏常州 213164
  • 2. 河海大学机电工程学院,江苏常州 213200
  • 3. 中国科学院合肥物质科学研究所智能机械研究所,安徽合肥 230031
  • 折叠

摘要

Abstract

[Objective]To meet the practical requirements for comprehensive grading based on the appearance quality and size of apples,and to address issues such as low efficiency of manual sorting,complex structure,and high cost of sorting equipment for Chinese apples.[Methods]A YOLOv5s-apple model was proposed.The transformer module and CBAM attention module were introduced into the backbone network,and the weighted Bidirectional feature pyramid network(Bi-FPN)was added to improve the neck network.Then,combined with HALCON software,a self-designed intelligent apple damage detection system was used to carry out damage sorting and size classification.[Results]The experimental results showed that compared with the original YOLOv5s model,the mAP of the YOLOv5s-Apple model was improved by 6.2%,and the accuracy of apple sorting system could reach 97.5%,the processing speed of the system was 5 s/apple.[Conclusion]The system can effectively carry out apple grading and sorting,and provide a reference for the intellectualization and low cost of Apple detection equipment.

关键词

苹果/分选/无损检测/深度学习/YOLOv5/注意力机制

Key words

apple/sorting/non-destructive testing/deep learning/YOLOv5/attention mechanisms

引用本文复制引用

秦寅初,李涛,李旭,王美玲,谭治英..基于机器视觉的苹果表损智能检测系统设计[J].食品与机械,2024,40(6):138-142,5.

基金项目

江苏省产业前瞻与关键核心技术重点项目(编号:BE2021016-4) (编号:BE2021016-4)

食品与机械

OA北大核心CSTPCD

1003-5788

访问量0
|
下载量0
段落导航相关论文