基于YOLO的低成本且轻量化的秧苗计数研究OA北大核心CSTPCD
Research on low-cost and lightweight seedling counting method based on YOLO
农业生产中需要对秧苗进行计数以获取种子质量和种植密度等评估信息,而小规模批量育种环境下存在人工依赖程度高、软硬件设备差的情况.针对此问题,文中以唇形科植物为例,提出了一种低成本、轻量化的秧苗计数方法.首先提出数据集的快速构建方法,以降低数据集成本;然后通过改进YOLO模型颈部特征融合部分和精简头部来保证模型轻量高效,并添加改进的通道注意力方法以改善图像低分辨率造成的漏检率过高问题,构建了秧苗计数模型Seedet.实验结果表明,与YOLOv5s模型相比,Seedet的模型参数与计算量分别降低了73.45%和47.59%,检测精确率和速度分别提高了3.987%和70.09%.文中提出的计数方法更适合于低成本场景下的秧苗计数,促进了农业生产中深度学习的落地应用.
It is required to count the seedling in agricultural production to obtain assessment information such as seed quality and planting density.However,there is a high degree of manual dependence and poor hardware and software equipment in small-scale batch breeding environments.In view of the above,a low-cost and lightweight seedling counting method is proposed by taking Labiatae as an example.A fast construction method for the dataset is proposed to reduce the cost of the dataset.By improving the feature fusion part of the neck and streamlining the head of the YOLO model,the lightweight and efficiency of the model is ensured.In addition,an improved channel attention method is added to eliminate the excessive missed detection rate caused by the low resolution of the image.So far,the seedling counting model Seedet is constructed.The experimental results show that the Seedet's parameters and computational burden are reduced by 73.45%and 47.59%,respectively,and its detection accuracy and detection speed are improved by 3.987%and 70.09%,respectively,in comparison with those of the YOLOv5s.The proposed counting method is more suitable for seedling counting in low-cost scenarios and can promote the application of deep learning in agricultural production.
苏优生;陈继清;郝科崴;佘锴蓉;黄样
广西大学 机械工程学院,广西 南宁 530007广西大学 机械工程学院,广西 南宁 530007||广西制造系统与先进制造技术重点实验室,广西 南宁 530007
电子信息工程
秧苗计数YOLO深度学习轻量化通道注意力低成本
seedling countingYOLOdeep learninglightweightchannel attentionlow cost
《现代电子技术》 2024 (015)
122-126 / 5
国家自然科学基金项目(62163005);广西自然科学基金项目(2022GXNSFAA035633)
评论