|国家科技期刊平台
首页|期刊导航|现代雷达|基于粒子群算法的低轨重点卫星雷达协同探测任务规划方法

基于粒子群算法的低轨重点卫星雷达协同探测任务规划方法OA北大核心CSTPCD

Task Scheduling Method for Collaborative Observation of High-threat LEO Satellites Using Radars Based on PSO Algorithm

中文摘要英文摘要

为提升定轨、成像、目标特性测量等多种模式下的观测效率,基于粒子群算法提出了一种低轨重点卫星雷达观测任务规划方法.相较基于优先级的任务规划方法,文中方法可对所有卫星按给定观测频次无丢失观测,满足雷达视场、时间窗口、任务切换等约束.使用雷达仰角、斜距、雷达截面积构建权值对基于观测时长的目标函数进行修改,并使用粒子群优化算法求解最大总观测时长或最快完成时间.仿真场景为两部假想地面雷达协同对 30 颗低轨重点卫星做 24h~72h观测.结果表明,所有卫星无丢失观测,最大总观测时长和最快完成时间分别为 18 622 s和15 h 16 min(场景时间:24 h).使用带有权值的目标函数可获得平均观测仰角、斜距的改善,而总观测时长基本一致.

In order to improve the observation efficiency of orbital determination,imaging,target characteristic measurement and so on,a task scheduling method is proposed for radar observation of high-threat satellites situated in low earth orbit(LEO).Com-pared with the priority-oriented scheduling method,this method enables all satellites to be observed with a given frequency,satisfy-ing constraints such as radar's field of view,time window,transition time,etc.The factors of radar detection such as elevation an-gle,slant,and radar cross-section are utilized to construct the weight when defining the objective function based on time length of observation.Particle swam optimization(PSO)algorithm is employed to achieve the maximum total time length or quickest accom-plishment of observation.Simulation is conducted to verify the effectiveness of the proposed method.Two notional ground radars are used to observe 30 high-threat LEO satellites for 24 h~72 h.Results show that:all satellites are observed without missing and under the given conditions,and the maximum total time length and quickest accomplishment of observation are 18 622 s and 15 h 16 min,respectively(scenario time:24 h).Furthermore,when using the weighted objective function,it tends to obtain a larger elevation angle and smaller slant during the whole observation process,while the total time length of observation is basically con-sistent with that of using the non-weighted one.

陈冠任;刘伟;翟计全;赵盛至;张蒙;夏凌昊

南京电子技术研究所,江苏 南京 210039||雷达探测感知全国重点实验室,江苏 南京 210039||江苏省探测感知技术重点实验室,江苏 南京 210039

武器工业

任务规划低轨卫星空间目标监视雷达协同态势感知

task schedulinglow earth orbit(LEO)satellitesspace surveillanceradar collaborationsituational awareness

《现代雷达》 2024 (006)

108-114 / 7

10.16592/j.cnki.1004-7859.2024.06.018

评论