| 注册
首页|期刊导航|移动通信|基于机器学习的OTFS系统信道估计与信号检测研究进展

基于机器学习的OTFS系统信道估计与信号检测研究进展

廖勇 韩小金

移动通信2024,Vol.48Issue(7):46-56,11.
移动通信2024,Vol.48Issue(7):46-56,11.DOI:10.3969/j.issn.1006-1010.20240422-0001

基于机器学习的OTFS系统信道估计与信号检测研究进展

Advancements in Machine Learning-Based Channel Estimation and Signal Detection for OTFS Systems

廖勇 1韩小金1

作者信息

  • 1. 重庆大学微电子与通信工程学院,重庆 400044
  • 折叠

摘要

Abstract

OTFS modulation effectively combats ICI in high-mobility scenarios,offering significant performance gains over traditional OFDM and enhancing spectral efficiency and communication quality in high-Doppler environments,thus attracting extensive research interest in recent years.The primary focus and challenge in OTFS systems lie in channel estimation and signal detection.Artificial intelligence has emerged as a potent information processing tool,widely adopted across various industries.Machine learning,as a crucial branch of artificial intelligence,when integrated with the OTFS technique,addresses issues in channel estimation and signal detection,thereby improving system performance,stability,and reliability.This paper provides a comprehensive survey,analysis,comparison,and synthesis of current machine learning-based algorithms for channel estimation and signal detection in OTFS systems,identifies technical challenges,and discusses future technological development trends.

关键词

人工智能/机器学习/第六代移动通信/正交时频空/信道估计/信号检测

Key words

artificial intelligence/machine learning/sixth generation mobile communication/orthogonal time-frequency space/channel estimation/signal detection

分类

电子信息工程

引用本文复制引用

廖勇,韩小金..基于机器学习的OTFS系统信道估计与信号检测研究进展[J].移动通信,2024,48(7):46-56,11.

基金项目

重庆市自然科学基金"面向超高速移动场景的OTFS系统信道估计与均衡研究"(CSTB2023NSCQ-MSX0025) (CSTB2023NSCQ-MSX0025)

移动通信

1006-1010

访问量0
|
下载量0
段落导航相关论文