基于 Swin Transformer 网络与 Adapt-RandAugment数据增强方法的小肠胶囊内镜图像分类方法研究OACSTPCD
Small bowel capsule endoscopy image classification method based on Swin Transformer network and Adapt-RandAugment data augmentation approach
目的:为提高小肠病变分类识别的准确性,提出一种基于Swin Transformer网络与Adapt-RandAugment数据增强方法的小肠胶囊内镜图像分类方法.方法:基于RandAugment数据增强子策略和增强小肠胶囊内镜图像时不丢失特征、不失真的原则提出Adapt-RandAugment数据增强方法.在公开的小肠胶囊内镜图像Kvasir-Capsule数据集中,基于Swin Transformer网络,采用Adapt-RandAugment数据增强方法进行训练,以卷积神经网络ResNet152、DenseNet161为基准,验证Swin Transformer网络和Adapt-RandAugment数据增强方法组合对小肠胶囊内镜图像分类识别的性能.结果:提出的方法宏平均精度(macro average precision,MAC-PRE)、宏平均召回率(macro average recall,MAC-REC)、宏 F1 分数(macro average F1 score,MAC-F1-S)分别为 0.383 2、0.314 8、0.290 5,微平均精度(micro average precision,MIC-PRE)、微平均召回率(micro average recall,MIC-REC)、微平均 F1 分数(micro average F1 score,MIC-F1-S)均为 0.755 3,马修斯相关系数(Matthews correlation coefficient,MCC)为 0.452 3,均优于 ResNet152 和DenseNet161网络.结论:基于Swin Transformer网络与Adapt-RandAugment数据增强方法的小肠胶囊内镜图像分类方法具有较好的小肠胶囊内镜图像分类识别效果和较高的识别准确率.
Objective To propose a method for classifying small bowel capsule endoscopy images by combining the Swin Transformer network with an improved Adapt-RandAugment data augmentation approach,aiming to enhance the accuracy and efficiency of small bowel lesion classification and recognition.Methods An Adapt-RandAugment data augmentation approach was formulated based on the RandAugment data enhancement sub-strategy and the principles of no feature loss and no distortion when enhancing small bowel capsule endoscopy images.In the publicly available Kvasir-Capsule dataset of small bowel capsule endoscopic images,the Adapt-RandAugment data augmentation approach was trained based on the Swin Transformer network,and the convolutional neural networks ResNet152 and DenseNet161 were used as the benchmarks to validate the combined Swin Transformer network and Adapt-RandAugment data augmentation approach for small bowel capsule endoscopy image classification.Results The proposed algorithm gained advantages over ResNet152 and DenseNet161 networks in the indicators,which had the macro average precision(MAC-PRE),macro average recall(MAC-REC),macro average F1 score(MAC-Fi-S)being 0.383 2,0.314 8 and 0.290 5 respectively,the micro average precision(MIC-PRE),micro average recall(MIC-REC)and micro average F1 score(MIC-Fi-S)all being 0.755 3,and the Matthews correlation coe-fficient(MCC)being 0.452 3.Conclusion The proposed small bowel capsule endoscopy image classification method based on Swin Transformer network and Adapt-RandAugment data augmentation approach behaves well in classified recognition efficiency and accuracy.[Chinese Medical Equipment Journal,2024,45(6):9-16]
聂瑞;刘学思;童飞;邓远阳;刘相花;杨利;张和华;段傲文
陆军军医大学大坪医院医学工程科,重庆 400042陆军军医大学大坪医院医学工程科,重庆 400042||重庆邮电大学生命健康信息科学与工程学院,重庆 400065
基础医学
Swin Transformer网络Adapt-RandAugment数据增强胶囊内镜图像分类小肠病变
Swin Transformer networkAdapt-RandAugmentdata augmentationcapsule endoscopyimage classificationsmall bowel lesion
《医疗卫生装备》 2024 (006)
9-16 / 8
重庆市技术预见项目(CSTB2022TFII-OFX0040);重庆市自然基金项目(CSTB2023NSCQ-MSX0199)
评论