|国家科技期刊平台
首页|期刊导航|医疗卫生装备|磁共振图像引导下前列腺癌在线自适应放疗自动勾画研究

磁共振图像引导下前列腺癌在线自适应放疗自动勾画研究OACSTPCD

Auto-segmentation during online adaptive MRI-guided radiotherapy for prostate cancer

中文摘要英文摘要

目的:探讨深度学习(deep learning,DL)和图谱库(Atlas)联合的MRI引导下在线自适应放疗自动勾画方案的勾画效果.方法:选取2020年1月至2021年9月在某院进行MRI引导下在线自适应放疗的15例前列腺癌患者,以随机抽样法分成训练集(12例)和测试集(3例).基于训练集分别建立DL勾画和Atlas勾画的临床靶区(clinical target volume,CTV)和危及器官(organs at risk,OAR)模型,基于测试集分别对2种勾画模型的结果进行修改并记录修改时长.对比2种勾画方法的勾画精度[戴斯相似性系数(Dice similarity coefficient,DSC)、豪斯多夫距离(Hausdorff distance,HD)和平均一致性距离(mean distance to agreement,MDA)]和勾画效率.结合2种方法勾画的优势及特点,建立DL+Atlas联合自动勾画方案,对比DL+Atlas联合自动勾画方案与单独勾画方案的勾画用时.结果:勾画精度对比结果显示,与DL勾画的CTV和OAR模型相比,Atlas勾画的CTV各项指标均优于DL勾画,差异有统计学意义(P<0.05);在膀胱和直肠方面,Atlas勾画的DSC和MDA劣于DL勾画,差异有统计学意义(P<0.05).勾画效率对比结果显示,医生以DL勾画为基准修改CTV和OAR的平均时间为9.4 min,以Atlas勾画为基准修改CTV和OAR的平均时间为12 min.DL+Atlas联合自动勾画方案所需平均时间为8 min,优于DL及Atlas单独勾画方案.结论:DL+Atlas联合的MRI引导下在线自适应放疗自动勾画方案勾画用时少,具有较高的准确性,可提升勾画效率.

Objective To explore the effect of auto-segmentation based on deep learning(DL)and Atlas during online adaptive MRI-guided radiotherapy.Methods Totally 15 prostate cancer patients undergoing MRI-guided online adaptive radiotherapy at some hospital from January 2020 to September 2021 were selected and divided into a training set(12 cases)and a test set(3 cases)by random sampling method.With the training set data the models of clinical target volume(CTV)and organs at risk(OAR)by DL and Atlas segmentation were established,and with the test set data the two segmentation models were modified and the modification lengths were recorded.DL and Atlas segmentation methods were compared on segmentation efficiency and accuracy in terms of Dice similarity coefficient(DSC),Hausdorff distance(HD)and mean distance to agreement(MDA).A joint auto-segmentation scheme based on combined DL and Atlas was constructed with considerations on the advantages and characteristics of the two methods,which was compared with the schemes respectively based on DL or Atlas from the aspect of the time consumed for segmentation.Results Accuracy comparison showed Atlas segmentation model behaved better significantly than DL model for CTV(P<0.05),while obviously worse than the latter for DSC and MDA in bladder and rectum(P<0.05).The doctor took 9.4 min in average for CTV and OAR modification based on DL model and 12 min in average for Atlas-model-based modification.The joint auto-segmentation scheme only needed 8 min in average for CTV and OAR modification,which gained advantages over the schemes based on DL or Atlas.Conclusion The auto-segmentation based on combined DL and Atlas during online adaptive MRI-guided radiotherapy behaves well in low time consumption,high accuracy and efficiency.[Chinese Medical Equipment Journal,2024,45(6):59-64]

闫雪娜;马翔宇;曾强;门阔;陈辛元

国家癌症中心/国家肿瘤临床医学研究中心/中国医学科学院北京协和医学院肿瘤医院放疗科,北京 100021

基础医学

磁共振图像引导放疗DL勾画Atlas勾画自动勾画前列腺癌

MRI-guided radiotherapydeep learning-based segmentationAtlas-based segmentationauto segmentationprostate cancer

《医疗卫生装备》 2024 (006)

59-64 / 6

国家自然科学基金项目(12275357);北京市自然科学基金项目(7222149);中国癌症基金会北京希望马拉松专项基金项目(LC2021A15);中国医学科学院肿瘤医院住培教学研究课题(E2024002)

10.19745/j.1003-8868.2024113

评论