| 注册
首页|期刊导航|自动化学报|基于特征变换和度量网络的小样本学习算法

基于特征变换和度量网络的小样本学习算法

王多瑞 杜杨 董兰芳 胡卫明 李兵

自动化学报2024,Vol.50Issue(7):1305-1314,10.
自动化学报2024,Vol.50Issue(7):1305-1314,10.DOI:10.16383/j.aas.c210903

基于特征变换和度量网络的小样本学习算法

Feature Transformation and Metric Networks for Few-shot Learning

王多瑞 1杜杨 2董兰芳 3胡卫明 4李兵4

作者信息

  • 1. 中国科学技术大学 合肥 230026||中国科学院自动化研究所模式识别国家重点实验室 北京 100190
  • 2. 中国科学院自动化研究所模式识别国家重点实验室 北京 100190||阿里巴巴科技(北京)有限公司 北京 100016
  • 3. 中国科学技术大学 合肥 230026
  • 4. 中国科学院自动化研究所模式识别国家重点实验室 北京 100190
  • 折叠

摘要

Abstract

For few-shot classification,training samples for each class are highly limited.Consequently,samples from the same class tend to distribute sparsely while boundaries between different classes are indistinct in the feature space.Therefore,a novel few-shot learning algorithm based on feature transformation and metric networks(FTMN)is proposed for few-shot learning.The algorithm maps samples to the feature space through an embedding function and calculates the residual between the input features and their class center.A feature transformation function is then constructed to learn from the residual,enabling input features to move closer to their class center after trans-formation.The transformed features are used to update the class centers,increasing the distance between centers of different classes.Furthermore,the algorithm introduces a novel metric function that jointly expresses the metric distances of each point within the features.The metric function simultaneously optimizes both cosine similarity and Euclidean distance.The performance of the algorithm on commonly used datasets for few-shot classification valid-ates its effectiveness and generalization ability.

关键词

特征变换/度量学习/小样本学习/残差学习

Key words

Feature transformation/metric learning/few-shot learning/residual learning

引用本文复制引用

王多瑞,杜杨,董兰芳,胡卫明,李兵..基于特征变换和度量网络的小样本学习算法[J].自动化学报,2024,50(7):1305-1314,10.

基金项目

国家重点研发计划(2018AAA0102802),国家自然科学基金(62036011,62192782,61721004),中国科学院前沿科学重点研究计划(QYZDJ-SSW-JSC040)资助Supported by National Key Research and Development Pro-gram of China(2018AAA0102802),National Natural Science Foundation of China(62036011,62192782,61721004),and Key Research Program of Frontier Sciences of Chinese Academy of Sciences(QYZDJ-SSW-JSC040) (2018AAA0102802)

自动化学报

OA北大核心CSTPCD

0254-4156

访问量0
|
下载量0
段落导航相关论文