| 注册
首页|期刊导航|中国感染控制杂志|基于GBDT模型的医院室内空气微生物浓度预测

基于GBDT模型的医院室内空气微生物浓度预测

杨光飞 邬水 钱翔宇 杨宇红 孙野 邹韵 庚俐莉 刘媛

中国感染控制杂志2024,Vol.23Issue(7):787-797,11.
中国感染控制杂志2024,Vol.23Issue(7):787-797,11.DOI:10.12138/j.issn.1671-9638.20244826

基于GBDT模型的医院室内空气微生物浓度预测

Prediction of microbial concentration in hospital indoor air based on gra-dient boosting decision tree model

杨光飞 1邬水 2钱翔宇 3杨宇红 4孙野 5邹韵 6庚俐莉 7刘媛8

作者信息

  • 1. 大连理工大学附属中心医院,辽宁 大连 116000||大连理工大学系统工程研究所,辽宁 大连 116024
  • 2. 大连理工大学环境学院,辽宁 大连 116024
  • 3. 大连理工大学系统工程研究所,辽宁 大连 116024
  • 4. 大连理工大学附属肿瘤医院离退休工作部,辽宁 沈阳 110042
  • 5. 大连理工大学附属肿瘤医院疾病预防与感染控制办公室,辽宁沈阳 110042
  • 6. 大连理工大学附属肿瘤医院教学与学生工作部,辽宁沈阳 110042
  • 7. 大连理工大学附属中心医院感染性疾病科,辽宁大连 116000
  • 8. 大连理工大学附属中心医院呼吸与危重症科,辽宁大连 116000
  • 折叠

摘要

Abstract

Objective To explore the prediction of hospital indoor microbial concentration in air based on real-time indoor air environment monitoring data and machine learning algorithms.Methods Four locations in a hospital were selected as monitoring sampling points from May 23 to June 5,2022.The"internet of things"sensor was used to monitor a variety of real-time air environment data.Air microbial concentration data collected at each point were matched,and the gradient boosting decision tree(GBDT)was used to predict real-time indoor microbial concentra-tion in air.Five other common machine learning models were selected for comparison,including random forest(RF),decision tree(DT),k-nearest neighbor(KNN),linear regression(LR)and artificial neural network(ANN).The validity of the model was verified by the mean absolute error(MAE),root mean square error(RMSE)and mean absolute percentage error(MAPE).Results The MAPE value of GBDT model in the outpa-tient elevator room(point A),bronchoscopy room(point B),CT waiting area(point C),and nurses'station in the supply room(point D)were 22.49%,36.28%,29.34%,and 26.43%,respectively.The mean performance of the GBDT model was higher than that of other machine learning models at three sampling points and slightly lower than that of the ANN model at only one sampling point.The mean MAPE value of GBDT model at four sampling points was 28.64%,that is,the predicted value deviated from the actual value by 28.64%,indicating that GBDT model has good prediction results and the predicted value was within the available range.Conclusion The GBDT machine learning model based on real-time indoor air environment monitoring data can improve the prediction accuracy of in-door air microbial concentration in hospitals.

关键词

微生物浓度/室内环境/GBDT模型/空气微生物浓度

Key words

microbial concentration/indoor environment/GBDT model/air microbial concentration

分类

医药卫生

引用本文复制引用

杨光飞,邬水,钱翔宇,杨宇红,孙野,邹韵,庚俐莉,刘媛..基于GBDT模型的医院室内空气微生物浓度预测[J].中国感染控制杂志,2024,23(7):787-797,11.

基金项目

国家自然科学基金面上项目(42071273) (42071273)

中国感染控制杂志

OA北大核心CSTPCD

1671-9638

访问量0
|
下载量0
段落导航相关论文