|国家科技期刊平台
首页|期刊导航|中国光学(中英文)|插损鲁棒性的全复值光学神经网络

插损鲁棒性的全复值光学神经网络OA北大核心CSTPCD

Fully complex optical neural network with insertion-loss robustness

中文摘要英文摘要

基于马赫-曾德尔干涉仪(Mach-Zehnder Interferometer,MZI)级联拓扑结构的线性光学处理器被证明是实现光学神经网络(Optical Neural Network,ONN)的重要途径,但还有不少实际问题有待解决.针对芯片制造、测试过程中可能导致的相位误差和插入损耗等问题,通过实验和理论仿真分析了几种基于MZI结构的可重构光学处理器.发现可以通过单个N×N的Clements阵列结构来实现任意酉矩阵的权重,构建稀疏连接的全复值光学神经网络,将光学深度大大降低,以实现较高的插入损耗鲁棒性.此外,对于多层光学神经网络来说,由于构建该任意酉矩阵的自由度有限,故在每一层Clements结构前面加一个相移器层,有助于将分类数据映射到更高的数据维度,能使神经网络更快速的收敛.

Linear optical processors based on the cascaded topology of Mach-Zehnder Interferometer(MZI)have been demonstrated to be an important way of implementing Optical Neural Networks(ONN),but sever-al practical challenges still need resolution.Concerning issues arising from chip manufacturing and testing processes that could lead to phase errors and insertion losses,we conducted experiments and theoretical sim-ulations for various reconfigurable optical processors.We found that the weights of any arbitrary unitary mat-rix can be realized through some single N×N Clements units,that can substantially reduce the optical depth and enhance robustness against insertion losses.This approach allows for the construction of fully complex optical neural networks.Additionally,In multi-layer ONN,due to the limited degrees of freedom in con-structing this arbitrary matrix,we introduced a phase-shift layer before each layer of the Clements unit.This design aids in mapping classification data to higher-dimensional spaces,facilitating faster neural network convergence.

陈慧彬;汤凯飞;游振宇

泉州师范学院光子技术研究院,福建泉州 362000||福建省先进微纳光子技术与器件重点实验室,福建泉州 362000南京大学现代工程与应用科学学院,江苏南京 210023

计算机与自动化

光学神经网络MZI阵列可重构光学处理器

optical neural networkMach-Zehnder interferometer arrayreconfigurable optical processor

《中国光学(中英文)》 2024 (004)

834-841 / 8

国家自然科学基金(No.61705119)Supported by the National Natural Science Foundation of China(No.61705119)

10.37188/CO.2023-0198

评论