| 注册
首页|期刊导航|中国光学(中英文)|插损鲁棒性的全复值光学神经网络

插损鲁棒性的全复值光学神经网络

陈慧彬 汤凯飞 游振宇

中国光学(中英文)2024,Vol.17Issue(4):834-841,8.
中国光学(中英文)2024,Vol.17Issue(4):834-841,8.DOI:10.37188/CO.2023-0198

插损鲁棒性的全复值光学神经网络

Fully complex optical neural network with insertion-loss robustness

陈慧彬 1汤凯飞 2游振宇1

作者信息

  • 1. 泉州师范学院光子技术研究院,福建泉州 362000||福建省先进微纳光子技术与器件重点实验室,福建泉州 362000
  • 2. 南京大学现代工程与应用科学学院,江苏南京 210023
  • 折叠

摘要

Abstract

Linear optical processors based on the cascaded topology of Mach-Zehnder Interferometer(MZI)have been demonstrated to be an important way of implementing Optical Neural Networks(ONN),but sever-al practical challenges still need resolution.Concerning issues arising from chip manufacturing and testing processes that could lead to phase errors and insertion losses,we conducted experiments and theoretical sim-ulations for various reconfigurable optical processors.We found that the weights of any arbitrary unitary mat-rix can be realized through some single N×N Clements units,that can substantially reduce the optical depth and enhance robustness against insertion losses.This approach allows for the construction of fully complex optical neural networks.Additionally,In multi-layer ONN,due to the limited degrees of freedom in con-structing this arbitrary matrix,we introduced a phase-shift layer before each layer of the Clements unit.This design aids in mapping classification data to higher-dimensional spaces,facilitating faster neural network convergence.

关键词

光学神经网络/MZI阵列/可重构光学处理器

Key words

optical neural network/Mach-Zehnder interferometer array/reconfigurable optical processor

分类

信息技术与安全科学

引用本文复制引用

陈慧彬,汤凯飞,游振宇..插损鲁棒性的全复值光学神经网络[J].中国光学(中英文),2024,17(4):834-841,8.

基金项目

国家自然科学基金(No.61705119)Supported by the National Natural Science Foundation of China(No.61705119) (No.61705119)

中国光学(中英文)

OA北大核心CSTPCD

2095-1531

访问量6
|
下载量0
段落导航相关论文