|国家科技期刊平台
首页|期刊导航|中国光学(中英文)|基于贝叶斯神经网络的相位梯度计算方法

基于贝叶斯神经网络的相位梯度计算方法OA北大核心CSTPCD

Phase gradient estimation using Bayesian neural network

中文摘要英文摘要

应变重构是相衬光学相干层析力学性能表征中的关键步骤,其需要准确计算出差分包裹相位的梯度分布.为了能够解决强噪声干扰下的相位梯度重构信噪比低的难题,提出了一种基于贝叶斯神经网络的相位梯度计算方法.首先,通过计算机模拟不同散斑噪声等级下的包裹相位图,并生成相应的理想相位梯度,以构建网络的训练集.其次,基于网络训练集采用贝叶斯推断理论学习强噪声环境下的包裹相位与相位梯度的"端到端"映射关系.最后,将相衬光学相干层析测量的差分包裹相位结果送入贝叶斯神经网络进行处理,实现高信噪比相位梯度预测.此外,通过借助贝叶斯神经网络的统计特性,以模型不确定度来定量评估相位梯度预测结果的可靠性.通过数值实验和三点弯曲力学加载实验对比分析了本文方法和主流矢量方法的性能.实验结果表明:在噪声较小的条件下,本文方法重构的相位梯度信噪比可提升8%;在噪声较强条件下,本文方法能成功恢复因相位条纹难以分辨而无法计算的相位梯度.此外,模型不确定度能够定量分析网络的相位梯度预测误差.可以预见,在样品形变复杂且先验信息未知的条件下,本工作为相衬光学相干层析提供了一种有效的应变重构方法,从而能实现高质量和高可靠的内部力学性能表征.

Strain reconstruction is a vital component in the characterization of mechanical properties of phase-contrast optical coherence tomography(PC-OCT).It requires an accurate calculation for gradient dis-tributions on the differential wrapped phase map.In order to address the challenge of low signal-to-noise ra-tio(SNR)in phase gradient calculation under severe noise interference,a Bayesian-neural-network-based phase gradient calculation is presented.Initially,wrapped phase maps with varying levels of speckle noise and their corresponding ideal phase gradient distributions are generated through a computer simulation.These wrapped phase maps and phase gradient distributions serve as the training datasets.Subsequently,the network learns the"end-to-end"relationship between the wrapped phase maps and phase gradient distribu-tions in a noisy environment by utilizing a Bayesian inference theory.Finally,the wrapped phase measured by PC-OCT is processed by Bayesian neural network(BNN),and the high-quality distribution of phase gradients is accurately predicted by inputting the measured wrapped phase-difference maps into the network.Additionally,the statistical process introduced by BNN allows for the utilization of model uncertainty in the quantitative assessment of the network predictions'reliability.Computer simulation and three-point bending mechanical loading experiment compare the performance of the BNN and the popular vector method.The results indicate that the BNN can enhance the SNR of estimated phase gradients by 8% in the presence of low noise levels.Importantly,the BNN successfully recovers the phase gradients that the vector method is unable to calculate due to the unresolved phase fringes in the presence of strong noise.Moreover,the BNN model uncertainty can be used to quantitatively analyze the prediction errors.It is expected that the contribution of this work can offer effective strain estimation for PC-OCT,enabling the internal mechanical property charac-terization to become high-quality and high-reliability.

张康洋;倪梓浩;董博;白玉磊

广东工业大学自动化学院,广东广州 510006广东工业大学自动化学院,广东广州 510006||智能检测与制造物联教育部重点实验室,广东广州 510006

计算机与自动化

光学相干层析成像相衬技术相位梯度计算贝叶斯神经网络形变测量

optical coherence tomographyphase contrastphase gradient estimationbayesian neural net-workdeformation measurement

《中国光学(中英文)》 2024 (004)

842-851 / 10

国家自然科学基金(No.61705047,No.62171140);广东省自然科学基金(No.2021A1515011945,No.2021A1515012598,No.2021A1515011343)Supported by National Natural Science Foundation of China(No.61705047,No.62171140);Natural Science Foundation of Guangdong Province(No.2021A1515011945,No.2021A1515012598,No.2021A 1515011343)

10.37188/CO.2023-0168

评论