| 注册
首页|期刊导航|高技术通讯|基于三维卷积时空融合网络的压缩视频质量增强算法

基于三维卷积时空融合网络的压缩视频质量增强算法

黄威威 贾克斌

高技术通讯2024,Vol.34Issue(7):726-733,8.
高技术通讯2024,Vol.34Issue(7):726-733,8.DOI:10.3772/j.issn.1002-0470.2024.07.006

基于三维卷积时空融合网络的压缩视频质量增强算法

Compressed video quality enhancement algorithm based on 3D convolutional spatio-temporal fusion network

黄威威 1贾克斌1

作者信息

  • 1. 北京工业大学信息学部 北京 100124||北京工业大学计算智能与智能系统北京市重点实验室 北京 100124||先进信息网络北京实验室 北京 100124
  • 折叠

摘要

Abstract

Standard compression algorithms are typically used to compress video data for storage and transmission over networks.However,compressed video can have compression artifacts that degrade quality.To address this prob-lem,a post-processing method based on deep learning is proposed.Firstly,a novel 3-dimensional convolutional spatio-temporal fusion(3D-CSTF)network is designed,which extracts the temporal information between consecu-tive video frames through the filtering characteristics of the 3D convolution kernel in three dimensions,and utilizes the strong correlation of the information between video frames to enhance the video quality.Among it,a quality en-hanced network(Qe-Net)is designed for mapping and extracting video frame features.Secondly,seven consecu-tive video frames are sent to the network for end-to-end training and the current frame is enhanced by using the in-formation of the previous and last three frames.Finally,training and testing are carried out on the MFQEv2 data-set.Experimental results demonstrate that this method achieves excellent performance in terms of the video quality assessment standard PSNR.When the quantization parameter(QP)are equal to 37,32,27 and 22,the PSNR can be increased by 0.82 dB,0.83 dB,0.79 dB and 0.74 dB,respectively.

关键词

3D卷积/视频质量增强/多帧信息/深度学习

Key words

3-dimensional convolution/video quality enhancement/multi-frame information/deep learning

引用本文复制引用

黄威威,贾克斌..基于三维卷积时空融合网络的压缩视频质量增强算法[J].高技术通讯,2024,34(7):726-733,8.

基金项目

北京市自然科学基金(4212001)资助项目. (4212001)

高技术通讯

OA北大核心CSTPCD

1002-0470

访问量0
|
下载量0
段落导航相关论文