| 注册
首页|期刊导航|高技术通讯|受限密集环境下基于对比学习和强化学习的机器人导航方法

受限密集环境下基于对比学习和强化学习的机器人导航方法

禹鑫燚 胡加南 郑万财 欧林林

高技术通讯2024,Vol.34Issue(7):734-743,10.
高技术通讯2024,Vol.34Issue(7):734-743,10.DOI:10.3772/j.issn.1002-0470.2024.07.007

受限密集环境下基于对比学习和强化学习的机器人导航方法

Robot navigation method based on contrastive learning and reinforcement learning in restricted and dense environments

禹鑫燚 1胡加南 1郑万财 1欧林林1

作者信息

  • 1. 浙江工业大学信息工程学院 杭州 310023
  • 折叠

摘要

Abstract

Robot navigation in dynamic environment is an important but challenging task.For the robot navigation in re-stricted and dense environment,this paper proposes a robot navigation method based on the combination of deep re-inforcement learning(DRL)and contrastive learning.Firstly,the trajectory vectorization is used to obtain the his-tory information of robot and humans,and a subgraph network is designed to aggregate it,so that the ability of robot to predict future scenes is improved.Secondly,the interaction information between agents(robot and humans)is extracted by the graph neural network(GNN),which gives the robot the ability to predict the intention of humans.Finally,on the basis of reinforcement learning,contrastive learning is integrated,and a positive sample enhance-ment method is proposed based on the nature of stochastic policy reinforcement learning algorithm,so as to give the robot the ability to judge the security of other position in the scene and to find more feasible paths,improving navi-gation success rate in complex environment.Simulation results show that the proposed method has better perform-ance than the existing method in restricted and dense environment.

关键词

深度强化学习(DRL)/对比学习/机器人导航/人机交互

Key words

deep reinforcement learning(DRL)/contrastive learning/robot navigation/human-robot inter-action

引用本文复制引用

禹鑫燚,胡加南,郑万财,欧林林..受限密集环境下基于对比学习和强化学习的机器人导航方法[J].高技术通讯,2024,34(7):734-743,10.

基金项目

国家重点研发计划(2018YFB1308400)和浙江省自然科学基金(LY21F030018)资助项目. (2018YFB1308400)

高技术通讯

OA北大核心CSTPCD

1002-0470

访问量0
|
下载量0
段落导航相关论文