| 注册
首页|期刊导航|高技术通讯|基于双深度Q网络算法的多用户端对端能源共享机制研究

基于双深度Q网络算法的多用户端对端能源共享机制研究

武东昊 王国烽 毛毳 陈玉萍 张有兵

高技术通讯2024,Vol.34Issue(7):755-764,10.
高技术通讯2024,Vol.34Issue(7):755-764,10.DOI:10.3772/j.issn.1002-0470.2024.07.009

基于双深度Q网络算法的多用户端对端能源共享机制研究

Research on multi-user P2P energy sharing mechanism based on DDQN algorithm

武东昊 1王国烽 1毛毳 2陈玉萍 2张有兵1

作者信息

  • 1. 浙江工业大学信息工程学院 杭州 310023
  • 2. 浙江华云电力工程设计咨询有限公司 杭州 310026
  • 折叠

摘要

Abstract

As a new way of energy balance and interaction in the user end energy market,peer-to-peer(P2P)power trading can effectively promote the energy sharing within the user group and improve the economic benefits of the users participating in the energy market.However,the traditional method of solving P2P power trading can not re-spond to the change of the source load among users in real time.Therefore,this paper establishes a multi-user P2P energy community trading model based on multi-type users,and introduces the deep reinforcement learning(RL)algorithm based on double deep Q network(DDQN)to solve it.The proposed method reads the environmental in-formation in the multi-user P2P energy community through the prediction network and the target network in the DDQN algorithm.The trained neural network can solve the multi-user P2P trading problem in the current communi-ty through the real-time photovoltaic,load and electricity price data.Finally,the simulation results prove that the proposed method not only promotes the sharing of P2P energy trading among users in the community,but also en-sures the economy of the multi-user P2P energy community.

关键词

端对端(P2P)能源共享/强化学习(RL)/能源交易市场/双深度Q网络(DDQN)算法

Key words

peer-to-peer(P2P)energy sharing/reinforcement learning(RL)/energy trading market/double deep Q network(DDQN)

引用本文复制引用

武东昊,王国烽,毛毳,陈玉萍,张有兵..基于双深度Q网络算法的多用户端对端能源共享机制研究[J].高技术通讯,2024,34(7):755-764,10.

基金项目

国家自然科学基金(U22B20116)资助项目. (U22B20116)

高技术通讯

OA北大核心CSTPCD

1002-0470

访问量0
|
下载量0
段落导航相关论文