基于双深度Q网络算法的多用户端对端能源共享机制研究OA北大核心CSTPCD
Research on multi-user P2P energy sharing mechanism based on DDQN algorithm
端对端(P2P)电力交易作为用户侧能源市场的一种新的能源平衡和互动方式,可以有效促进用户群体内的能源共享,提高参与能源市场用户的经济效益.然而传统求解用户间P2P交易的方法依赖对于光伏、负荷数据的预测,难以实时响应用户间的源荷变动问题.为此,本文建立了一种以多类型用户为基础的多用户P2P能源社区交易模型,并引入基于双深度Q网络(DDQN)的强化学习(RL)算法对其进行求解.所提方法通过DDQN算法中的预测网络以及目标网络读取多用户P2P能源社区中的环境信息,训练后的神经网络可通过实时的光伏、负荷以及电价数据对当前社区内的多用户P2P交易问题进行求解.案例仿真结果表明,所提方法在促进社区内用户间P2P能源交易共享的同时,保证了多用户P2P能源社区的经济性.
As a new way of energy balance and interaction in the user end energy market,peer-to-peer(P2P)power trading can effectively promote the energy sharing within the user group and improve the economic benefits of the users participating in the energy market.However,the traditional method of solving P2P power trading can not re-spond to the change of the source load among users in real time.Therefore,this paper establishes a multi-user P2P energy community trading model based on multi-type users,and introduces the deep reinforcement learning(RL)algorithm based on double deep Q network(DDQN)to solve it.The proposed method reads the environmental in-formation in the multi-user P2P energy community through the prediction network and the target network in the DDQN algorithm.The trained neural network can solve the multi-user P2P trading problem in the current communi-ty through the real-time photovoltaic,load and electricity price data.Finally,the simulation results prove that the proposed method not only promotes the sharing of P2P energy trading among users in the community,but also en-sures the economy of the multi-user P2P energy community.
武东昊;王国烽;毛毳;陈玉萍;张有兵
浙江工业大学信息工程学院 杭州 310023浙江华云电力工程设计咨询有限公司 杭州 310026
端对端(P2P)能源共享强化学习(RL)能源交易市场双深度Q网络(DDQN)算法
peer-to-peer(P2P)energy sharingreinforcement learning(RL)energy trading marketdouble deep Q network(DDQN)
《高技术通讯》 2024 (007)
755-764 / 10
国家自然科学基金(U22B20116)资助项目.
评论