基于多视角热像图序列的物体表面温度场重建OA北大核心CSTPCD
Surface Temperature Field Reconstruction Based on Multi-view Thermal Image Sequence
表面温度场模型能够有效反映物体表面的温度分布情况.由于单一视角采集的图像信息无法覆盖整个物体表面,难以实现整个物体表面温度场的重建,此外温度场模型中非目标物体的存在,对温度模型分析存在干扰.提出了一种基于多视角热像图序列的物体表面温度场重建方法.首先使用语义分割算法对可见光图像提取目标物体轮廓,然后结合深度数据与热像图温度信息实现目标物体单视角温度点云的融合;随后采用多视角图像数据和多视角温度点云拼接的方法,借助各视角相机的位姿对温度点云进行初始拼接,应用多视角的LM-ICP算法对全局温度点云进行配准优化.实验结果表明,该方法有效重建了物体表面温度场模型,并且具有较小的尺寸误差(2.61 mm)和温度误差(0.56℃).
The surface temperature field model effectively reflects the temperature distribution on the surface of the object.Since the image information collected from one single viewpoint cannot cover the entire object,it is difficult to reconstruct the temperature field of the entire object surface.Additionally,in the temperature field model,the presence of non-target objects can affect temperature model analysis.A method for reconstructing the object's surface temperature field based on a multi-view thermal image sequence was proposed.Firstly,a semantic segmentation algorithm was employed to extract the contours of the target object from visible light images,and then the fusion of the single view temperature point cloud of the target object was achieved by combining depth data with temperature information from the thermal image.Subsequently,the method of multi-view image data and multi-view temperature point cloud stitching was adopted,and the initial stitching of the temperature point cloud was carried out using the poses of cameras from various viewpoints,the multi-view LM-ICP algorithm was applied to optimize the registration of the global temperature point cloud.Experimental results show that the method effectively reconstructs the object surface temperature field model,and has small size error(2.61 mm)and temperature errors(0.56℃).
毕淳锴;张远辉;付铎
中国计量大学 机电工程学院,浙江 杭州 310018
温度测量温度场重建多视角热像图序列位姿估计点云配准
temperature measurementtemperature field reconstructionmultiple perspectivesthermal image sequencepose estimationpoint cloud registration
《计量学报》 2024 (007)
997-1006 / 10
浙江省自然科学基金(LY19F010007)
评论