| 注册
首页|期刊导航|人民长江|考虑时空特征的城市内涝智能预报模型研究

考虑时空特征的城市内涝智能预报模型研究

赵杏杏 左翔 蔡文静 刘修恒

人民长江2024,Vol.55Issue(7):20-28,9.
人民长江2024,Vol.55Issue(7):20-28,9.DOI:10.16232/j.cnki.1001-4179.2024.07.003

考虑时空特征的城市内涝智能预报模型研究

Study on urban waterlogging intelligent forecast model considering temporal and spatial characteristics

赵杏杏 1左翔 1蔡文静 1刘修恒2

作者信息

  • 1. 南京河海智慧水利研究院,江苏南京 210012||南京中禹智慧水利研究院有限公司,江苏南京 210012
  • 2. 河海大学 计算机与信息学院,江苏 南京 211100
  • 折叠

摘要

Abstract

Given the problems of the traditional urban waterlogging forecast model,such as being time-consuming,few meas-ured waterlogging samples,and insufficient consideration of waterlogging characteristic factors,an urban waterlogging mechanism model was first built by coupling the SWMM model and the LISFLOOD-FP model.The mechanism model was used to numerical-ly simulate the designed rainstorm in different recurrence periods to generate waterlogging samples.Based on samples and water-logging characteristic factors,a three-dimensional spatio-temporal matrix was constructed to realize the orderly organization of waterlogging characteristic factor data.Based on the above,a convolutional neural network(CNN)was coupled with long short term memory network(LSTM),and an urban waterlogging intelligent forecast model considering multi-temporal characteristics(CNN-LSTM)was constructed.The intelligent model was trained by a three-dimensional space-time matrix using measured samples from Tianhe District,Guangzhou City.The results show that the CNN-LSTM model can quickly predict the inundation depth and inundation range.The Nash coefficient of waterlogging control point water level simulation was above 0.9,and the aver-age matching rate of the inundated area at every moment reached 92.2%.Compared with the mechanism model,the simulation ef-ficiency was improved by nearly 70 times.The intelligent model had good forecasting accuracy and efficiency,and could effectively support the work of urban waterlogging prevention and disaster reduction.

关键词

城市内涝预报/智能模型/时空特征/卷积神经网络/长短时记忆网络

Key words

urban waterlogging forecast/intelligent model/spatio-temporal characteristics/convolutional neural network/long short term memory network

分类

建筑与水利

引用本文复制引用

赵杏杏,左翔,蔡文静,刘修恒..考虑时空特征的城市内涝智能预报模型研究[J].人民长江,2024,55(7):20-28,9.

基金项目

国家重点研发计划项目(2021YFB3900601) (2021YFB3900601)

江苏省水利科技项目(2022050,2022064,202304) (2022050,2022064,202304)

人民长江

OA北大核心CSTPCD

1001-4179

访问量0
|
下载量0
段落导航相关论文