|国家科技期刊平台
首页|期刊导航|中国海洋大学学报(自然科学版)|海南岛周边海域台风风暴潮-海浪耦合作用机理研究

海南岛周边海域台风风暴潮-海浪耦合作用机理研究OA北大核心CSTPCD

Study on the Coupling Mechanism of Typhoon Storm Surge and Wave Around Hainan Island

中文摘要英文摘要

本文使用ADCIRC+SWAN耦合模式,针对海南岛特殊地形,建立了基于非结构网格的高分辨率风暴潮-海浪耦合模型.针对在海南省造成严重风暴潮灾害的0518号台风"达维",开展台风期间风暴潮-海浪耦合与非耦合数值模拟实验,探讨了水位、流场对波浪的影响和台风特征参数对海南岛台风风暴潮与波浪耦合效应的影响.结果表明:(1)水位影响在近岸浅水区主要表现为使台风浪的有效波高增加;(2)当风向、流向与平均波向之间夹角为锐角时,流场作用使有效波高降低,当流向与平均波向之间夹角为钝角时,流场作用使有效波高增大;(3)波浪耦合效应对风暴潮的影响是不可忽视的,贡献率约在14.2%;(4)当台风强度达到55 m/s或台风尺度达到50 km,波浪增水效应基本达到饱和.本文的研究对台风风暴潮高质量数值模拟预警及保障沿海地区生产生活有重要意义.

Based on ADCIRC+SWAN coupling model,it selects typical Typhoon 0518 to carry out a series of tests with and without consideration of water level,flow field and wave respectively.It studies the influence of water level and flow field on typhoon wind and wave and the influence of wave coupling effect on tidal tide.The results show that:(1)In the coastal shallow water area,the water level reduces the energy dissipation of the wave,leading to the increase of the effective height of the typhoon wave;(2)the effective wave height increases when having obtuse angle between the average wave direc-tion and the flow direction.The effect of flow field decreases the effective wave height when having acute angle between the average wave direction,flow direction and wind direction;(3)the effect of wave coupling in the nearshore region mainly results in an increase of storm surge,with the average contribution up to 14%,which plays a vital role in the numerical simulation and prediction of storm surge;(4)wave water-increasing effect could basically meet saturation at 55 m/s typhoon intensity or 50 km typhoon scale.

唐梓洋;管守德;李爱莲;赵玮

中国海洋大学三亚海洋研究院海南省海洋立体观测与信息重点实验室,海南三亚 572000中国海洋大学三亚海洋研究院海南省海洋立体观测与信息重点实验室,海南三亚 572000||中国海洋大学物理海洋教育部重点实验室,山东青岛 266100国家海洋信息中心,天津 300000

海洋学

ADCIRC+SWAN耦合模式风暴潮波浪耦合效应台风波浪

ADCIRC+SWAN coupling modestorm surgewave coupling effecttyphoonwave

《中国海洋大学学报(自然科学版)》 2024 (009)

1-11 / 11

海南省科技专项(ZDYF2021SHFZ265);三亚崖州湾科技城管理局2022年度科技计划项目(SKJC-2022-01-001);国家自然科学基金项目(41876011);国家重点研究发展计划项目(2022YFC3104304)资助 Supported by the Hainan Science and Technology Project(ZDYF2021SHFZ265);the 2022 Research Program of Sanya Yazhou Bay-Science and Technology City(SKIC-2022-01-001);the National Natural Science Foundation of China(41876011);the National Key Research and Development Program of China(2022YFC3104304)

10.16441/j.cnki.hdxb.20230120

评论