| 注册
首页|期刊导航|食品与机械|基于可见/近红外透射光谱的亚健康水心苹果检测

基于可见/近红外透射光谱的亚健康水心苹果检测

王晨晨 翟明灿 李贺 莫小明 查志华 吴杰

食品与机械2024,Vol.40Issue(7):117-125,182,10.
食品与机械2024,Vol.40Issue(7):117-125,182,10.DOI:10.13652/j.spjx.1003.5788.2024.80368

基于可见/近红外透射光谱的亚健康水心苹果检测

Detection of sub-healthy apples with watercore based on visible/near-infrared transmission spectroscopy

王晨晨 1翟明灿 1李贺 1莫小明 1查志华 2吴杰2

作者信息

  • 1. 石河子大学机械电气工程学院,新疆石河子 832003
  • 2. 石河子大学机械电气工程学院,新疆石河子 832003||农业农村部西北农业装备重点实验室,新疆石河子 832003||绿洲特色经济作物生产机械化教育部工程研究中心,新疆石河子 832003
  • 折叠

摘要

Abstract

[Objective]Achieving non-destructive testing of sub-healthy watercore apples.[Methods]First,the logarithmic function method and the power function method proposed by this study were used to correct the sample spectra.Subsequently,the corrected data were converted into different images of gramian angular difference field(GADF),gramian angular summation field(GASF),markov transition field(MTF),recurrence plot(RP),symmetric dot pattern(SDP).Then,the ResNet50 network model with the convolutional block attention module(CBAM)was used to mine the deep image features related to the degree of watercore,which were downscaled by the t-distributed stochastic neighbor embedding(t-SNE)method and analyzed by clustering to determine the most suitable image transformation method.Finally,the most suitable image features were inputted into the improved particle swarm algorithm(IPSO)optimized support vector machine(SVM),extreme learning machine(ELM),k-nearest neighbour(KNN)and random forest(RF)classifier for the three-class classification of watercore apple.[Results]The results showed that the power function method was better than the logarithmic function method in eliminating the effect of diameter on the transmission spectrum.The silhouette coefficient(SC),the calinski harabasz score(CHS),and the davies-bouldin index(DBI)were 0.93,0.88 and 0.24 after visualization of the image features in the GADF,better than the rest of the image transformation methods.ResNet50-IPSO-ELM achieved the highest classification accuracy of 96.8%.The overall discrimination accuracy of the three watercore classes apples in the test set reached 96.3%,and the stable precision(SP),stable recall(SR),and stable F1-score(SF)were 87.2%,95.8%,and 92.3%,respectively.[Conclusion]The model maintains a high classification accuracy for the majority class of apples without watercore and healthy apples with watercore and a high discriminatory ability for the minority class of sub-healthy apples with watercore.

关键词

苹果/水心/可见/近红外光谱/光谱修正/深度特征/无损检测

Key words

apples/watercore/visible/near-infrared spectroscopy/spectral correction/deep features/nondestructive examination

引用本文复制引用

王晨晨,翟明灿,李贺,莫小明,查志华,吴杰..基于可见/近红外透射光谱的亚健康水心苹果检测[J].食品与机械,2024,40(7):117-125,182,10.

基金项目

国家自然科学基金项目(编号:31560476) (编号:31560476)

兵团研究生创新项目(2023年) (2023年)

食品与机械

OA北大核心CSTPCD

1003-5788

访问量2
|
下载量0
段落导航相关论文