|国家科技期刊平台
首页|期刊导航|现代情报|基于LDA2Vec-BERT的新兴技术主题多维指标识别与演化分析研究

基于LDA2Vec-BERT的新兴技术主题多维指标识别与演化分析研究OA北大核心CHSSCDCSSCICSTPCD

Multidimensional Indicator Identification and Evolution Analysis of Emerging Technology Topics Based on LDA2Vec-BERT

中文摘要英文摘要

[目的/意义]挖掘并可视化全球性颠覆性技术:区块链领域发明专利文献中隐含的细粒度新兴和热点技术主题及其演化差异,能够为领域从业者、科技政策制定者、管理部门和科技研发人员提供参考和借鉴.[方法/过程]以全球区块链领域的专利文献为基础,按时序划分不同的时间切片,综合运用 LDA主题模型、Word2vec词向量模型和BERT语言模型构建区块链领域技术主题挖掘模型,同时通过构建识别新兴和热点技术主题的四维指标:主题热度,主题族群,主题技术性和主题新颖度,识别出区块链领域细粒度新兴和热点技术主题,并结合主题演化模型,对新兴和热点技术主题差异进行演化分析.[结果/结论]研究发现,LDA2Vec-BERT主题识别与演化模型能够基于区块链领域海量专利文献标题和摘要识别出领域的新兴技术主题和热点技术主题,并直观清晰展示出区块链领域细粒度技术主题的演化趋势和特征,发现区块链技术形成从构架研究到应用研究的发展趋势.通过模型结果对比可以发现,识别结果科学合理,且模型的精准率、召回率、F1 值均高于其他识别模型,证明构建的集成模型能有效识别颠覆性技术领域细粒度新兴和热点主题.

[Purpose/Significance]Mining and visualizing the global disruptive technology,such as the emerging and hot technical topics and their evolution differences implied in the global blockchain patent literature can provide for practi-tioners in the field,science and technology policy makers,management departments and science and technology research and development personnel.[Method/Process]Based on the patent literature in the global blockchain field,different time slices were divided in a timely order.LDA topic model,Word2vec word vector model,and BERT language model were comprehensively utilized to build the technical topic mining model in the blockchain field.At the same time,four-dimension-al indicators,including topic popularity,topic population,topic technicality and topic novelty were constructed to identify the hot technology topics and emerging technology topics in the field of blockchain.These were then combined with the topic evolution model to carry out evolutionary analysis on the emerging hot topics.[Result/Conclusion]The research finds that the LDA2Vec-BERT topic recognition and evolution model could identify emerging and hot technical topics in the field based on the massive patent literature in the field of blockchain,and visually and clearly displays the evolution trend and characteristics of the topic of blockchain technology,and finds the development trend of blockchain technology from archi-tecture research to application research.By comparing the model results,it can be found that the empirical results are rea-sonable,and the accuracy rate,recall rate and F1 value of the model are higher than other recognition models,which proves that the method has the good effect on the recognition of disruptive technology topics.

胡泽文;王梦雅;韩雅蓉

南京信息工程大学管理工程学院,江苏 南京 210044

区块链专利LDA主题模型Word2vec模型BERT模型新兴技术主题热点技术主题主题识别主题演化

blockchain patentsLDA topic modelWord2vec modelBERT modelemerging topicshot topicstopic miningtopic evolution

《现代情报》 2024 (009)

42-58 / 17

国家社会科学基金重大项目"前沿交叉领域识别与融合创新路径与预测方法研究"(项目编号:23&ZD225).

10.3969/j.issn.1008-0821.2024.09.004

评论