| 注册
首页|期刊导航|现代情报|基于异构图注意力网络的药物不良反应实体关系联合抽取研究

基于异构图注意力网络的药物不良反应实体关系联合抽取研究

仲雨乐 韩普 许鑫

现代情报2024,Vol.44Issue(9):71-81,11.
现代情报2024,Vol.44Issue(9):71-81,11.DOI:10.3969/j.issn.1008-0821.2024.09.006

基于异构图注意力网络的药物不良反应实体关系联合抽取研究

Joint Extraction of Adverse Drug Reactions Entities and Relations Based on Heterogeneous Graph Attention Network

仲雨乐 1韩普 2许鑫1

作者信息

  • 1. 华东师范大学经济与管理学院,上海 200062
  • 2. 南京邮电大学管理学院,江苏 南京 210003||江苏省数据工程与知识服务重点实验室,江苏 南京 210023
  • 折叠

摘要

Abstract

[Purpose/Significance]Joint extraction of entities and relations is a crucial component in the adverse drug reactions monitoring and knowledge organization.To address the issues of error propagation,entity redundancy and interac-tion deficiency in traditional pipeline extraction methods,and to improve the extraction effect of overlapping ternary groups of adverse drug reactions,the paper proposes a joint extraction model of adverse drug reactions entities and relations based on heterogeneous graph attention network MF-HGAT.[Method/Process]Firstly,the paper conducted knowledge trans-fered from external medical corpus resources through pre-training with BERT to achieve the fusion of multiple semantic fea-tures.Secondly,the paper introduced relations information as prior knowledge for heterogeneous graph nodes to avoid ex-tracting semantically irrelevant entities.Then,the paper enhanced the representations of characters and relations nodes by iteratively fusing messages with a hierarchical graph attention network through message passing.Finally,the paper extracted drug adverse reactions entities and relations after updating the node representations.[Result/Conclusion]Experiments on self-constructed adverse drug reactions datasets reveal that the joint extraction F1 value of MF-HGAT,which incorporates relations information and external medical and health domain knowledge,reaches 92.75%,which is an improvement of 5.29%over the mainstream model CasRel.The results demonstrate that the MF-HGAT model further enriches entity-rela-tions semantic information by fusing character and relations node semantics through heterogeneous graph attention network,which is of great significance to the knowledge discovery of adverse drug reactions.

关键词

异构图注意力网络/实体关系联合抽取/药物不良反应/关系重叠/知识发现

Key words

heterogeneous graph attention network/joint entity relation extraction/adverse drug reactions/relations overlap/knowledge discovery

分类

社会科学

引用本文复制引用

仲雨乐,韩普,许鑫..基于异构图注意力网络的药物不良反应实体关系联合抽取研究[J].现代情报,2024,44(9):71-81,11.

基金项目

国家社会科学基金项目"面向多模态医疗健康数据的知识组织模式研究"(项目编号:22BTQ096) (项目编号:22BTQ096)

江苏高校青蓝工程和南京邮电大学1311人才计划. ()

现代情报

OA北大核心CHSSCDCSSCICSTPCD

1008-0821

访问量0
|
下载量0
段落导航相关论文