| 注册
首页|期刊导航|自动化学报|De-DDPM:可控、可迁移的缺陷图像生成方法

De-DDPM:可控、可迁移的缺陷图像生成方法

岳忠牧 张喆 吕武 赵瑞祥 马杰

自动化学报2024,Vol.50Issue(8):1539-1549,11.
自动化学报2024,Vol.50Issue(8):1539-1549,11.DOI:10.16383/j.aas.c230688

De-DDPM:可控、可迁移的缺陷图像生成方法

De-DDPM:A Controllable and Transferable Defect Image Generation Method

岳忠牧 1张喆 1吕武 2赵瑞祥 2马杰1

作者信息

  • 1. 华中科技大学人工智能与自动化学院 武汉 430074
  • 2. 中国船舶集团有限公司航海科技有限责任公司 北京 100070
  • 折叠

摘要

Abstract

Surface defect detection technology based on deep learning is an important application in industry and the quality of defect image dataset has a significant impact on defect detection performance.A defect image genera-tion method based on denoising diffusion probabilistic model(DDPM)is designed to address the pain points of high cost of obtaining defect samples and low amount of defect data in actual industrial production processes.This meth-od enhances the model's differential learning of defect locations and defect free backgrounds during the training process.Through the defect control module during the generation process,this method accurately controls the cat-egory,morphology,saliency and other features of generated defects.Through the background fusion module,de-fects can be migrated on different defect free backgrounds,which greatly reducing the difficulty of obtaining defect samples on new backgrounds.The experiment has verified the defect control and defect migration capabilities of the model,and its generated results can effectively expand the training dataset and improve the accuracy of down-stream defect detection tasks.

关键词

数据增强/数据集扩充/缺陷图像生成/深度学习

Key words

Data augmentation/dataset expansion/defect image generation/deep learning

引用本文复制引用

岳忠牧,张喆,吕武,赵瑞祥,马杰..De-DDPM:可控、可迁移的缺陷图像生成方法[J].自动化学报,2024,50(8):1539-1549,11.

基金项目

国家自然科学基金(U1913602,61991412),装备预先研究基金(50911020603)资助Supported by National Natural Science Foundation of China(U1913602,61991412)and the Foundation of Equipment Pre-re-search Area(50911020603) (U1913602,61991412)

自动化学报

OA北大核心CSTPCD

0254-4156

访问量0
|
下载量0
段落导航相关论文