| 注册
首页|期刊导航|电力系统自动化|电力人工智能的演变与展望

电力人工智能的演变与展望

李鹏 余涛 李立浧 张孝顺 潘振宁 黄文琦 黄展鸿

电力系统自动化2024,Vol.48Issue(16):1-17,17.
电力系统自动化2024,Vol.48Issue(16):1-17,17.DOI:10.7500/AEPS20231226004

电力人工智能的演变与展望

Retrospect and Prospect of Artificial Intelligence for Electric Power System

李鹏 1余涛 2李立浧 3张孝顺 4潘振宁 2黄文琦 1黄展鸿2

作者信息

  • 1. 南方电网新型电力系统(北京)研究院有限公司,北京市 102209
  • 2. 华南理工大学电力学院,广东省广州市 510640
  • 3. 华南理工大学电力学院,广东省广州市 510640||中国南方电网有限责任公司,广东省广州市 510623
  • 4. 东北大学佛山研究生创新学院,广东省佛山市 528311
  • 折叠

摘要

Abstract

In the background of rapid development of new power systems,the deep coupling between massive multi-source heterogeneous information and diverse business brings significant challenges such as strong complexity and randomness in the power system operation.Concurrently,accelerating the construction of a flexible and intelligent new power system is a crucial strategy for energy development.There is an urgent need to establish a technology system of artificial intelligence for electric power system(AI EPS)that is intelligent,self-adaptive,and secure,in order to promote the intelligent transformation and development of the new power system.This paper reviews and summarizes the evolution and current research status of AI EPS technologies.It analyzes the technical framework,principles,and key technical methods for the new generation of AI EPS,which is based on pre-trained multimodal large models.The application schemes for power large model technology in the scenarios such as perception prediction,dispatching and control decision-making,and operation planning are proposed.The technical challenges and application bottlenecks faced by electric artificial intelligence based on power large models are discussed.Finally,the application of electric artificial general intelligence technology is summarized and prospected.

关键词

新型电力系统/人工智能/大模型/数据驱动

Key words

new power system/artificial intelligence/large model/data-driven

引用本文复制引用

李鹏,余涛,李立浧,张孝顺,潘振宁,黄文琦,黄展鸿..电力人工智能的演变与展望[J].电力系统自动化,2024,48(16):1-17,17.

基金项目

国家自然科学基金资助项目(52207105). This work is supported by National Natural Science Foundation of China(No.52207105). (52207105)

电力系统自动化

OA北大核心CSTPCD

1000-1026

访问量0
|
下载量0
段落导航相关论文