面向多目标优化的航空发动机装配特征选择OACHSSCDCSTPCD
Feature Selection for Aero-Engine Assembly Using Multi-objective Optimization
由于航空发动机装配工艺和试车工艺的复杂性,收集到的航空发动机装配数据的装配特征非常庞大,严重干扰了对航空发动机装配质量的准确预测,如何选择航空发动机装配的关键质量特征实现质量预测成为极具挑战性的问题.因此,针对航空发动机装配特征选择难题,本文提出面向多目标优化的航空发动机装配数据的两阶段特征选择方法.明确特征选择的优化目标,在第 1阶段,基于最大相关最小冗余算法的相关特征选择过程,计算装配特征与试车指标的互信息值,筛选出与试车指标相关性最大的相关特征,并剔除有干扰影响的冗余特征.在第 2阶段,通过引入种群初始化策略和自适应遗传算子,提出基于改进的二代非支配排序遗传算法的关键质量特征选择过程,得到航空发动机装配的关键质量特征子集的帕累托前沿.实验表明,本文所提出的两阶段特征选择方法比传统的方法有更好的适用性和有效性,实现了对航空发动机装配特征选择,提高了对航空发动机装配质量的预测准确率.
Due to the complexity of assembly and testing processes in aero-engine manufacturing,the collected assembly data encompass a large number of assembly features,which seriously interferes with the accurate prediction of assembly quality.Selecting the key quality features of aero-engine assembly to achieve quality prediction becomes a highly challenging task.Therefore,to address this issue,a two-stage feature selection method for aero-engine assembly data based on multi-objective optimization is proposed.Firstly,the optimization objectives of feature selection are defined.In the first stage,the relevant features are selected based on the max relevance and min redundancy(MRMR)algorithm to calculate the mutual information of assembly features and testing indicators.This process filters out the most relevant features related to testing indicators while removing redundant features with interference effects.In the second stage,by introducing a population initialization strategy and adaptive genetic operators,a key quality feature selection process based on the improved non-dominated sorting genetic algorithm-Ⅱ(NSGA-Ⅱ)is proposed to obtain the Pareto front of key quality feature subsets for aero-engine assembly.Finally,experimental results demonstrate that the proposed two-stage feature selection method has better applicability and effectiveness than traditional methods,which enhances the feature selection performance and improves the accuracy of quality prediction for aero-engine assembly.
陆文灏;柯勇伟;郭永强;司书宾
西北工业大学 机电学院,陕西 西安 710072||苏州工业职业技术学院 汽车工程学院,江苏 苏州 215104西北工业大学 机电学院,陕西 西安 710072中国航发 航空动力股份有限公司,陕西 西安 710021
经济学
航空发动机装配多目标优化高维数据关键质量特征
aero-engine assemblymulti-objective optimizationhigh-dimensional datakey quality features
《工业工程》 2024 (004)
1-8 / 8
国家自然科学基金资助项目(72231008,72271200)
评论