| 注册
首页|期刊导航|计算机工程与科学|基于SRAM缓存和存内计算的低功耗关键词唤醒系统

基于SRAM缓存和存内计算的低功耗关键词唤醒系统

黄至锐 贾心茹 朱浩哲 陈迟晓

计算机工程与科学2024,Vol.46Issue(8):1331-1339,9.
计算机工程与科学2024,Vol.46Issue(8):1331-1339,9.DOI:10.3969/j.issn.1007-130X.2024.08.001

基于SRAM缓存和存内计算的低功耗关键词唤醒系统

A low-power keyword spotting system with SRAM buffer and computing-in-memory

黄至锐 1贾心茹 1朱浩哲 1陈迟晓1

作者信息

  • 1. 复旦大学集成芯片与系统全国重点实验室,上海 200433||复旦大学芯片与系统前沿技术研究院,上海 200438
  • 折叠

摘要

Abstract

This paper proposes a low-power keyword spotting(KWS)system to overcome the prob-lem of high-power consumption caused by deploying KWS algorithms on edge computing hardware,which can significantly impact the endurance of mobile devices.The proposed KWS system is based on computing-in-memory(CIM)technology and software-hardware co-design.In terms of algorithm,a ternary quantized MFCC-CNN joint algorithm based on the standard MFCC algorithm topology is pro-posed.All the general matrix multiplication(GEMM)in MFCC is mapped to the neural network accel-erator.At the circuit level,the proposed system uses a computing-in-memory(CIM)core based on SRAM to overcome the power and memory walls in traditional von Neumann architecture accelerators.Additionally,a SRAM buffer circuit based on a look-up table is proposed to replace the register delay chain,which multiplexes the memory array in the CIM core.Both the SRAM-based CIM core and buffer are implemented using custom circuit units.At the system level,a low-power KWS system is proposed utilizing the two customized circuits discussed above.The system is implemented using ASIC and cus-tomized circuit design methods and synthesized using a 28 nm process library.The proposed system achieves a processing delay of 64 ms on 10 classification tasks,with a total power consumption of 645.28μW.The dynamic power consumption of the MFCC pipeline accounts for 5.9%of the total dynamic power consumption,and the total power consumption accounts for only 1.3%of the system's power consumption.

关键词

唤醒/三值量化神经网络/存内计算/串行快速傅里叶变换/软硬件协同设计

Key words

spotting/ternary quantized neural network/computing-in-memory/serial fast Fourier transform(FFT)/software-hardware co-design

分类

信息技术与安全科学

引用本文复制引用

黄至锐,贾心茹,朱浩哲,陈迟晓..基于SRAM缓存和存内计算的低功耗关键词唤醒系统[J].计算机工程与科学,2024,46(8):1331-1339,9.

基金项目

国家重点研发计划(2022YFB4500101) (2022YFB4500101)

计算机工程与科学

OA北大核心CSTPCD

1007-130X

访问量0
|
下载量0
段落导航相关论文