|国家科技期刊平台
首页|期刊导航|南京理工大学学报(自然科学版)|基于频率域可分离卷积的遥感图像道路分割方法

基于频率域可分离卷积的遥感图像道路分割方法OA北大核心CSTPCD

Separable convolution on frequency domain for road segmentation from remote sensing images

中文摘要英文摘要

遥感图像中分割道路是一个具有挑战性的课题.以前大多数方法都依赖于卷积神经网络,但这些网络模型很难捕获长距离的特征信息.以全局视野著称的注意力机制却拥有着较高的计算负担.频域下的卷积提供了一种新颖的长范围特征捕捉机制,并且可以通过引入非对称卷积结构实现低代价的计算成本.基于此,该文提出了一种基于遥感图像的道路分割网络模型——轻量级可分离傅里叶滤波U形网络(LSFU-Net).LSFU-Net整体采用了经典U-Net模型的结构,并由频域特征提取块作为基本模块组成.频域特征提取块中主要采用了可分离复数卷积,其实现了模型参数量压缩和模型特征提取能力增强.在马萨诸塞州道路数据集上和DeepGlobe道路数据集上的实验结果表明,LSFU-Net在较小的参数量下,表现出了优异的分割效果.

Segmentation of roads from remote sensing images is a challenging topic.Previously,most methods relied on convolutional neural networks,but these network models are difficult to capture long-distance feature information.The attention mechanism is known for its global vision,but it brings high computation burden.Convolution in frequency domain provides a novel mechanism to capture features over long-range,and an asymmetric convolution structure is introduced to achieve low computational cost.Based on it,this paper proposes a novel road segmentation network on remote sensing images,called lightweight separable Fourier filtered U-shape network(LSFU-Net).The LSFU-Net is composed of basic blocks for feature extraction in frequency domain and follows the pipeline of classical U-Net model.The separable complex convolution is used in basic blocks for feature extraction in frequency domain,which not only realizes the compression of model parameters,but also enhances the feature extraction ability of the model.Experimental results on the Massachusetts Roads Dataset and the DeepGlobe Road Dataset demonstrate that the LSFU-Net achieves excellent segmentation performance with fewer parameters.

赵金鼎;王彩玲;刘华军

南京邮电大学 自动化学院,江苏 南京 210023南京邮电大学 人工智能学院,江苏 南京 210023南京理工大学 计算机科学与工程学院,江苏 南京 210094

计算机与自动化

可分离复数卷积遥感道路分割频率域

separable complex convolutionremote sensingroad segmentationfrequency domain

《南京理工大学学报(自然科学版)》 2024 (004)

442-450 / 9

南京邮电大学自然科学基金(NY220057)

10.14177/j.cnki.32-1397n.2024.48.04.005

评论