基于深度学习模型的油气管道焊缝缺陷智能识别OA北大核心CSTPCDEI
焊接技术在油气管道连接时广泛应用,确保焊缝区域可靠是保障油气管道安全运行的关键。受工艺和技术制约,油气管道焊接过程中可能出现不同类型的焊缝缺陷。针对油气管道焊缝部分缺陷尺寸小、缺陷与背景差异性较小导致焊缝缺陷识别效果不理想、人工识别工作量大等问题,提出了基于SCT-ResNet50模型的管道焊缝缺陷智能识别新方法。首先将焊缝区域图像输入特征提取网络;然后在特征提取的浅层使用SCC(Spatial Channel Context)进行局部空间和通道信息融合,在特征提取较深的层次使用ECA-MHSA(Efficient Channel Attention-Multi-Head Self-Attention)来捕捉长程依赖和上下文信息;最后通过全连接层和Softmax得到最终的缺陷识别结果。研究结果表明:(1)该新方法在油气管道X射线图像焊缝缺陷数据集上缺陷识别准确率达到98.28%;(2)相较于ResNet50、VGG16、DenseNet121、MobileNetv3和EfficientNetv2分类方法,其准确率分别提高了3.05%、46.05%、28.99%、15.95%和18.84%;(3)在缺陷尺寸小、缺陷和背景差异较小的场景下,该新方法在油气管道焊缝缺陷识别中具有更高的准确率。结论认为,该新方法的优势在于结合SCC模块与ECA-MHSA模块学习图像的局部信息和全局信息,能较好解决油气管道焊缝缺陷分类效果不理想的问题,为保障油气管道安全运输提供了技术支撑。
罗仁泽;王磊;
西南石油大学计算机与软件学院,610500 油气藏地质及开发工程全国重点实验室·西南石油大学 西南石油大学电气信息学院西南石油大学计算机与软件学院,610500
石油、天然气工程
深度学习图像处理油气管道焊缝缺陷智能识别注意力机制
《天然气工业》 2024 (009)
P.199-208 / 10
评论